

LIBRARY

$\qquad$
PRESENTED BY
The Farish Liv. of the अirst
Independent vim. Lociety
of Hartford, fom.
(3742) Y une, 185:

## THE

## Toung Mathematician's Guide:

 Being a PLAIN and EASY
## INTRODUCTION TOTHE MATHEMATICKS.

 In Five Parts.$$
V I Z .
$$

I. Aritbmetick, Vulgar and Decimal, with all the ufeful Rules; And a General Method of Extracting the Roots of all Single Powers. II. Algebse, or Arithmetick in Species; wherein the Method of Raifing and Refolving Equations is rendered Eafy ; and illuftrated with Variety of Examples, and Numerical Queftions. Alfo the whole Bufinefs of Intereft and Annuities, $\mathcal{E}^{\circ}$ c. performed by the Pen.
III. The ©iements of ©isemetry, contracted, and Analytically demonftrated; with a new and eafy Method of finding the Circle's Periphery and Area to any affigned Exactnefs, by one Equation only: Alfo a new way of making Sines and Tangents.
IV. Conick ⿹ertinng, wherein the chief Properties, $\varepsilon^{\circ} c$. of the Ellipfis, Parabola, and Hyperbola, are clearly demonftrated.
V. The Axthntetick of $\mathfrak{Z}$ nfinites explained, and rendered Eafy; with it's Application to fuperficial and folid Geometry.

With an Appendix of practical ©bauging.

$$
\text { By } 7 O H N W A R D \text {. }
$$

The Tenth Edition, carefully Corrected.
To which is added,
A SUPPLEMENT, containing th. Hin c Logarithms, and an Index to the whole Wurs.
LONDON:

Printed for C. Hitch and L. Hawes, E. Wicksteed, J. Beecroft, W. Johnston, J. Richardson, T. Longman, S. Crowder and Co. P. Davey and B. Law, and T. Caslon. $175^{8}$.

To the Honourable

## Sir RICHARD GROSVENOR, of Eaton, in the CountyPalatine of Chefter, Baronet.

$$
S I R,
$$

WHEN requefted by fome Bookfellers in London, to revife and prepare this Treatife for a New Impreffion, and once refolved to anfwer their Demands; I was not long confidering at whofe Feet to lay it.

My Memory may indeed be impaired by Age, Misfortunes, and Accidents; nay, I am fenfible it is fo: But it muft be entirely loft, when I am forgetful of the great Obligations I lie under to Sir Ricbard Grofvenor.

Your Hofpitality and Generofity make you ftand unenvied in the Abundance of Fortune. Any Upftart may contrive to fpend a Great Eftate ; but it is a Felicity almoft peculiar to Great Birth to become One.

Were I now to defcribe Liberality, without Profurenefs; Steadinefs in Principles, without any private View; Candour and Affability, Good Nature joined to found Judgment, and a Serenity of Temper, which your Enemies will always find the Companion of true Courage ; and then pronounce that you are poffeffed of all thefe good Qualities in as high a Degree as moft Men living; No Gentleman that knows you well, would think I flattered you.

Sir, Give me Leave to fay, I honour your Character, and love your Perfon; My Expreflions are uncourtly, my Stile unpolifhed, and therefore more proper to be prefixed to a Work wherein the Matters related are indeed clad in a plain and homely Drefs; but they are true, and defigned to propagate Mathematical Learning among fuch as defire to be introduced into that Sort of Knowledge ; and I am extreamly pleafed they are permitted to be fent into the World under your Protection.

That you may long live, to promote the Good of your Country, and that City in whofe Intereft you have fo heartily engaged yourfelf; and that you may ever fucceed in your own private Affairs, and live to enjoy all the Bleflings that attend a quiet prudent Life, is the earneft Prayer of,

Honoured S I R,
Your mof Obliged, Humble,
and Obedient Servant ${ }_{2}$
J. W A R D.

To

## To the R E A D ER.

IThink it needlefs (and almoft endlefs) to run over all the Ufefulness, and Advantages of Mathematicks in General; and /oall therefore oorly touch upon thole two admirable Sciences, Arithmetick and Geometry; which are indeed the two grand Pillars (or rather the Foundations) upon which all otber Parts of Mathematical Learning depend

As to the UJefulnefs of Arithmetick, it is well known that no Bufinefs, Commerce, Trade, or Employment what foever, even from the Merchant to the Sbop-keeper, \&c. can be managed and carried on, witbout the AJiftance of Numbers.

And as to the UJefulnefs of Geometry, it is as certain, that no curious Art, or Mechanick-Work, can either be invented, improved, or performed, witbout it's affifing Principles; though perbaps the Artift, or Workman, has but little (nay, fcarce any) Knowledge in Geometry.

Then, as to the Advantages that arife from both there Noble Sciences, when duly joined together, to affift each otber, and then apply'd to Practice, (according as Ocrafion requires) they will readily be granted by all who confider the -vaft Advantages that accrue to Mankind from the Bujiness of Navigation only. As alfo from that of Surveying and Dividing of Lands betwixt Party and Party. Befides the great Pleafure and Ufe there is from Timekeepers, as Dials, Clocks, Watches, \&cc. All thefe, and a great many more very ufeful Arts, (too many to be enumerated here) wubolly depend upon the aforefaid Sciences:

And therefore it is no Wonder, That in all Ages fo many Ingenious and Learned Perfons bave employed themfelves in writing upon the Subject of Mathematicks; but then moft of thofe Authors feem to prefuppofe, that their Readers had made fome Progrefs in that Sort of Learning before they attempted to perufe thofe Books, which are generally large Volumes, written in fuch abfrufe Terms, that young Learners were really afraid of looking into thofe Studies.

Thefe Confiderations firt put me (many Years ago) upon the Thoughts of endeavouring to compofe fuch a plain and familiar Introduction to the Mathematicks, as might encourage thofe that were willing (to fpend fome Time that Way) to venture and proceed on with Chearfulnefs; though perbaps they were wholly ignorant of it's firft Rudiments. Therefore I began with their firft Elements or principles.

## The P R E F A C E.

That is, I began with an Unit in Arithmetick, and a Point in Geometry; and from thefe Foundations proceeded gradually on, leading the young Learner Step by Step with all the Plainne/s I could, \&c.

And for that Reafon I publibed this Treatife (Anno 1707) by the Title of the Young Mathematician's Guide; which has anfwered the Title fo well, that I believe I may truly fay (without Vanity) this Treatife bath proved a very belpful Guide to near five thoufand Perfons; and perbaps moft of them fuch as would never bave looked into the Mathematicks at all but for it.

And not only fo, but it batb been very well received among ft the Learned, and (I have been often told) fo well approved on at the Univerfities, in England, Scotland, and Ireland, that it is ordered to be publickly read to their Pupils, \&c.

The Title Page gives a hort Account of the feveral Parts treated of, with the Corrections and Additions that are made to this Fifth Edition, which I fail not enlarge upon, but leave the Book to speak for itfelf; and if it be not able to give Satisfaction to the Reader, I am fure all 1 can fay bere in it's Behalf will never recommend it: But this may be truly faid, That whoever reads it over, will find more in it than the Title doth promife, or perhaps be expects: it is true indeed, the Drefs is.but Plain and Homely, it being wholly intended to inftruct, and not to amufe or puzzle the young Learner with bard Words, and obfcure Terms: However, in this I Sall always have the Satisfaction; That I have fincerely aimed at what is ufeful, tho' in one of the meaneft ways; it is Honour enough for me to be accounted as one of the Under-Labourers in clearing the Ground a little, and removing fome of the Rubbi/h that lay in the Way to this Sort of Knowledge. How well I have performed That, muft be left to proper Fudges.

To be brief; as I am not fenjible of any Fundamental Error in this Treatife, fo I will not pretend to fay it is without Imperfections, (Humanum eft errare) which I bope the Reader will excufe, and pafs over with the like Candour and Good-Will that it was compofed for bis Ufe; by bis real Well-wihber,

London, OEtober 10 th, 1706.
Corrected, $E^{\circ} c$. at Chefter, January 20th, 1722.

## THE

# CONTENTS. 

## Geitbmetick. Part I.

PRECOGNITA, Concerning the proper Subjects, or Bufinefs
Chap. I. Concerning the Several Parts of Aritbmetick, and of fuch Cbaracters as are ufed in this Treatife.
Chap. II. Concerning the Principal Rules in Aritbmetick, and bow they are performed in whole Numbers.
Chap. III. Concerning Addition, Subfraction, and Reduction of Numbers that are of diferent Denominations.
Chap. IV. Of Vulgar Fractions, with all their various Rules. 48
Chap. V. Of Decimal Fractions or Parts, with all the ufeful Rules, and Contractions, \&c.
Chap. VI. Of continued Proportion, both Arithmetical and Geometrical; and bow to vary the Order of Things. 72
Chap. VII. Of Disjunct Proportion, or the Golden Rule, both Direct, Reciprocal or Inverfe, and Compound. 85
Chap.VIII. The Rules of Fellowfjip, Bartering, and Exchanging of Coins.
Chap. IX. Of Alligation, or Mixing of Things, with all it's Varieties or Cafes.
Chap. X. Concerning the Specifick Gravities of Metals, \&c. 117 Chap. XI. Evolution orExtracting the Roots of all Single Powers, how high foever they are, by one General Method. 123

## Glyebleat Part II.

Chap. I. The Metbod of noting down Quantities, and tracing of the Steps uffed in bringing them to an Equation. 143
Chap. II. The Six Principal Rules of Algebraick Aritbmetick, in whole 2 uantities.
Chap. III. Of Algebraick Fractious, or Broken Qantities. 163
Chap. IV. Of Surds, or Irrational Quantities.
Chap. V. Concerning the Nature of Equations, and how to prepare them for a Solution, \&c. 175
Chap. VI. Of Proportional 2 uantities, botb Arithmetical and Geometrical centinued; alfo of Mufical Proportion. 184 Chap.

Chap. VII. Of Proportional Quantities Disjunct, both Simple, Duplicate, and Triplicate; and how to turn Equations into Anologies, \&cc.

Page 190
Chap. VIII. Of Subfitution; and refolving 2uadratick Equations.
Chap, IX. Of Analyis, or the Method of refolving Problems, Exemplified by Forty Numerical Quefions. 202
Chap. X. The Solution of all Kind of Adfected Equations in Numbers.
Chap. XI. Of Simple Interef, and Annuities in all their various Cafes.

245
Chap. XII. Of Compound Intereft, and Annuities both for Years and Lives; and of Purchafing Freebold Effates. 253 ©emmetwy. Part III.
Chap. I. Of Geometrical Definitions and Axioms, \&cc. 283
Chap. II. The, Firft Rudiments or Leading Problems in Geometry.

292
Chap. III. A Collection of the mof ufeful Theorems in Plain Geometry, Analytically demonfirated. 300
Chape IV. The Algebraical Solution of Twenty eafy Problems in Plain Geometry; which does in part Shew the U/e of the laf Theorems.

320
Chap. V. Practical Problems and Rules, for finding the Area's of Right lined Superficies, demonfrated.
Chap. VI. A New and eafy Metbod of finding the Circle's Periphery, and Area, to any afligned Exaetnefs; by the Solution of one Equation only. Aljo a New Way of making Natural Sines and Tangents à priore. 347 Comick Sectiont. Part IV.
Chap. I, Definition of a Cone, and all it's Sections, \& c. 36 I Chap. II. Concerning the chief Properties of the Ellipfs, \&c. 357
Chap. III. Concerning the chief Properties of the Parabola. 380
Chap. IV. Concerning the chief Properties of the Hyperbola. 386

## Gutbmetich of Tufiniteg. Part V.

The Aritbmetick of Infinites explained, and rendered eafy; witb it's Application to Geometry, in demonjirating the Superficial and Solid Contents of Circular and Elliptical Figures, \&c.

397
An Appendix of 解actical Ouaghy.
Wherein all the cbief Rules and Problens ufeful in Gauging, are applied to Practice, \&c.

# A N <br> <br> INTRODUCTION <br> <br> INTRODUCTION TO THE <br> <br> matbematicks. 

 <br> <br> matbematicks.}

## P A R T I.

## PR $\mathbb{E} C O G N I T A$.

TH E Bufinefs of Mathematicks, in all it's Parts, both Theory and Practice, is only to fearch out and determine the true Quantity ; eitber of Matter, Space, or Motion, according as Occafion requires.
By Quantity of Matter is bere meant the Magnitude or Bignefs of any vifble thing, whofe Length, Breadth, and Thicknefs, may either be meafured, or eftimated.

By Quantity of Space is meant the Difance of one thing from another.

And by Quantity of Motion is meant the Swiftnefs of any, thing moving from one Place to another.

The Confideration of thefe, according as they may be propoped, are the Subjects of the Mathematicks, but chiefly that of Matter.

Now the Confideration of Matter, with refpect to it's Quantity, Forn, and Pofition, which may either be Natural, Accidental, or Defigned, will admit of infinite Varieties: But all the Varieties that are yet known, or indeed poffible to be conceived, are wholly comprized under the due Confideration of thefe Two, Magnitude and Number, which are the proper Subjects of Geometry, Arithmetick, and Algebra. All other Parts of the Mathematicks being only the Branches of thefe three Sciences, or rather their Application to particular Cafes.
$\mathbb{G r o m f t r} \mathrm{y}$ is a Science by which we fearch out, and come to know, either the whole Magnitude, or fome Part of any propofed Quantity; and is to be obtained by comparing it with another known Quantity of the fame Kind, which will always be one of thefe, viz. A lline (or Length only); A ⿷urface (that is, Length and Breadth) ; or a 5olio (which bath Length, Breadth, and Depth, or Thicknefs) ; Nature admitting of no other Dimenfions but thefe Three.

Arithmrtick is a Science by which we come to know what Number of Quantities there are (either real or imaginary) of any Kind, contained in another Quantity of the fame Kind: Now this Confideration is very different from that of Geometry, which is only to find out true and proper Anfwers to all fuch Quefions as demand, how Long, how Broad, how Big, ${ }^{\circ} \mathrm{c}$. But when we confider either more Quantities than one, or bow often one Quantity is contained in another, then we have recourfe to Arithmetick, which is to find out true and proper Anfwers to all fuch Queftions as demand, how Many, what Number or Multitude of Quantities there are. To be brief, the Subject of Geometry is that of Quantity, with refpect to it's Magnitude only; and the Subject of Arithmetick is Quantities with refpect to their Number only.
algrora is a Science by which the oft abftrufe or difficult Problems, either in Arithmetick or Geometry, are Refolved and Demonftrated; that is, it equally interferes with them both; and therefore it is promiccuoufly named, being fometimes called Specious Arithmetick, as by Harriot, Vieta, and Dr Wallis, Esc. And fometimes it is called Modern Geometry, particularly the ingenious and great Mathematician Dr Edmund Hal'ey, Savilian Profeffor of Geometry in the Univerfity of Oxford, and Royal Aftronomer at Greenwich, giving this following Inflance of the Excellence of our Modern Algebra, writes thus:

- The Excellence of the Modern Geometry (faith be) is in - nothing more evident, than in thofe full and Adequate Solutions - it gives to Problems; reprefenting all the poffible Cafes at one - View, and in one general Theorem many times comprehending - whole Sciences; which deduced at length into Propofitions, and - demonflrated after the Manner of the Ancients, might well be-- come the Subjects of large Treatifes: For what foever Theorem - folves the moft complicated Problem of the Kind, does with a ' due Reduction reach all the fubordinate Cafes.' Of which be gives a notable Inftance in the Doctrine of Dioptricks for finding the Foci of Optick Glaffes univer fally. (Vide Philofophical Tranfactions, Numb. 205.)

Thus you bave a fort and general. Account of the proper Subjects of thofe three noble and ufeful Sciences, Arithmetick, Geometry, and Algebra, I hall now proceed to give a particular Account of each; and firf of Arithmerick, which is the Bafis or Foundation of all Arts, both Mathematick and Mechanick; and therefore it ought to be well underflood before the reft are meddled withal.

## C H A P. I.

Concerning the Several Parts of aritbmetict, with the Definition of fuch Cbaracters as are ufed in tbis Treatije.

Wititbmatick, or the Art of Numbering, is fitly divided into three diftinct Parts, two of which are properly called Natural, and the third Artifcial.

The firft, being the moft plain and eafy, is commonly called Vulgar Aritbmetick in whole Numbers; becaufe every Unit or Integer concerned in it, reprefents one whole Quantity of fome Species or thing propofed.
The fecond is that which fuppofes an Unit (and confequently the Quantity or thing reprefented by that Unit) to be Broken or Divided into equal Parts (either even or uneven) and confiders of them either as pure Parts, viz. Each lefs than an Unit, or elfe of Parts and Integers intermixt. And is ufually called the Docirine of Vulgar Fractions.

The third, or Artificial Part, is called Decimal Arithmetick; being an Artificial Invention of managing Fraftions or Broken Numbers, by a much more commodious and eafy Way than that of Vulgar Fractions: For the feveral Operations performed in Decimals, differ but little from thofe in Whole Numbers: and therefore it is now become of general Ufe, efpecially in Geometrical Computations.
aritbmetick (in all it's Parts) is performed by the various ordering and difpofing of Ten Arabick Charafters or Numeral Figures (which by fome are called Digits).

The UJfe of thefe Characters is faid to be firft introduced into England near $f_{2 x}$ hundred Years ago, viz. about the $\mathrm{Y}_{6 \mathrm{ar}} \mathbf{1 1 3 0}$, vide $D_{r}$ Wallis's Algebra, Page 12.

The firft of thefe Cbaracters is called Unity, and reprefents one of any Kind of Species or 2uantity. As one World, one Star, one Man, \& cc.

Viz. Unity is that by which every thing that is, is called one, (Euclid. 7. Def. I.) and is the beginning of all Numbers. That is to fay, Number is a Multitude of Units. Euclid 7. Def. 2.
For, one more one, makes Two; and one, more one, more one makes Three, $\mathcal{E}^{c}$. Which is the firf and chief Poftulate, or rather Axiom to Arithmetick.

$$
V_{i z} .\left\{\begin{array}{l}
\text { That } 1+1=2 . \quad 1+1+1=3 . \quad 1+1+1+1=4 . \\
1+1+1+1+1=5 .
\end{array}\right.
$$

Nine of there Figures were thus compofed of Units, and differently form'd to reprefent fo many Units put together into one Sum, as was intended each fhould denote: Nine being the greateft Number of Units that was then thought convenient to be expreffed by one fingle Character; the laft of the Ten is only a Cypber, or (as fome phrafe it) a Nothing, becaufe of itfelf it fignifies nothing; for if never fo many Cyphers be Added to, or Subftracted from, any Number, they can neither increafe nor diminifh that Number; but yet, as a Cypher (or Cypbers) may be placed, the other Figures will become of different Values from what they were before, as will appear further on.

For the more convenient ordering of the aforefaid Numeral Figures, according to the feveral Varieties that happen in Computations; I do advife the young Learner to acquaint himfelf with the Signification of the following Algebraick Signs or Cbaracters, which he will find of excellent Ufe, as being a much fhorter, better, and more fignificant Way of denoting what is to be done (in moft Operations) than can otherwife be exprefied in Words at length.

Significations.
Signs Names.
The Sign of Addition; as $8+7$ is 8 more 7, and fignifies that the Numbers 8 and 7 are to be added into one Sum. The like is to be un$+3\{$ Plus or derftood when feveral Numbers are connected more. together with the Sign + .

As $34+22+9+45, \delta^{\circ} c$. denotes thefe are all to be added into one Sum.
$-\}\{$ Minus $\{$ The Sign of Subfraction; as $9-6$ is 9 lefs $-\}\{$ or lefs. $\{6$, and fignifies that 6 is to be taken from 9 , Ithat fo their Difference may be found.
 to 6 , and fignifies that 9 is to be Multiplied into or with 6 .
$\div\}\left\{B y . \quad\left\{\begin{array}{l}\text { The Sign of Divifion; as } 8 \div 2 \text {, is } 8 \text { by } 2, \\ \text { and fignifies that } 8 \text { is to be Divided by } 2, \text { alfo } \\ \text { thus } 2) 8\end{array}\right.\right.$ thus 2) 8 (4 or thus $\frac{2}{8}$ each fignifying the fame thing, to wit, 8 Divided by 2.

The Sign of Equality or Equation, viz. whenever this Sign = is placed betwixt Numbers (or
$=\}\{$ Equal. $\{$ Quantities) it denotes them to be Equal, as $9=9$, or $9+6=15$, or $9-6=3$, छुc. That is, 9 is Equal to 9, or 9 more 6 is Equal to 15, and 9 lefs 6 is Equal to 3, $\delta^{\circ}$.

The Sign of Proportion, or that commonly called the Golden Rule, or Rule of Three, and
$::\}\{$ So is. $\{::$ is always placed betwixt the Two middle Terms or Numbers in Pioportion. Thus $2: 8:: 6: 24$. To be read thus; as 2 , is to 8 ; $f_{0}$ is 6 , to 24 .

Thefe Signs and their Significations, being perfectly learnt, will help to fhorten the W ork.

## C H A P. II.

Concerning the Principal Rules in atitymetick, and bow they are performed in Whole Numbers.

$I$HE Rules by which Numerical Operations are perform'd in all the Parts of Aritbmetick, are many and various, feveral of them being form'd and raifed as Occafion requires, when applied to Practice; yet they are all comprehended within

tion) GDoition, פubfraction, Sulliplication, कDivition, and $\mathbb{C}$ 解帾ion, or Extraction of Roots.

## Sect. I. Of §Rumeration or §Rotation.

§umeration or Notation, teacheth to Read or Exprefs the true Value of any Number when writ down; and confequently to write down any propofed Number according to it's true Value when it is named: And this confifteth of Two Parts.

1. The due Order of placing down Figures.
2. The true valuing of each Figure in it's Place.

Both which are plainly exhibited in the following Table.


By this $\begin{aligned} & \text { Rumeration Table it is apparent, that the Order of }\end{aligned}$ Places is reckoned from the Right-hand towards the Left; the firft Place of any Number being always that which is the outmoft Figure to the Right-hand: and whatever Figure fands in that Place, doth only fignify it's own fimple Value, viz. fo many Units as that Figure reprefents.

The fecond Place is that of Tens, and any Figure ftanding in that Place fignifieth fo many $\tau_{\text {ens }}$ as that Figure reprefents Units.

The

The third Place is Hundreds, the fourth Place Thoufands, \&c. That is, each Place towards the Left-hand is Tin Times the Value of that next it, towards the Right.

For Inftance, fuppofe 759 were propofed to be read or pronounced according to the Value of each Figure as they now ftand. The firft Figure in this Sum is 9, becaufe it ftands in the Place of Units, and therefore fignifies but it's own fimple Value, to wit, 9 Units, or 9 . The fecond Figure 5 ftands in the Place of Tens, and therefore fignifies Five Tens or Fifty. The Figure 7 ftands in the third Place, or Place of Hundreds, and therefore it fignifies Seven Hundred; and the whole Sum is to be read or pronounced thus, Seven Hundred Fifty Nine.

Note, Although the Figure 7 ftands in the third Place (according to the Order of Numbering) yet when the whole Sum comes to be read, it is firft pronounced ; the reading of Numbers being performed like that of Letters or Words, always beginning with the outmoft Figure towards the Left-hand, and fo many Figures as are placed together without any Point, Comma, Line, or other Note of Diftinction between them, are all but one Sum, and muft be read as fuch.

For Example, 763596 is but one entire Sum or Number, notwithftanding it confifts of fix Places of Figures, and is thus read; Seven Hundred Sixty Three Thoufand, Five Hundred Ninety Six.

The like is to be obferved in reading or expreffing the true Value of any Sum or Rank of Numbers confifting of Seven, Eight, Nine, or more Places of Figures, each Figure being to be valued according to it's Diftance from the Place of Unity: As in the foregoing Table.

Now fuch Values may as well arife by Cyphers, as by other Figures; for Inftance, 6 ftanding by itfelf, reprefents but Six Units: But if a Cypher be annext to it thus, 60, then it becomes Sixty; for the Cypher poffeffing the Place of Units, hath thereby removed the 6 into the Place of Tens; and another Cypher more would make it 600, Six Hundred, \&c.

Whence it may be noted, that although a Cypher of itfelf fignify nothing (as hath been faid before) yet being placed on the Right-hand of any Figure, it augments the Value of that Figure by advancing it into a higher Place than otherwife it would have been, had not the Cypher been there.

Take one Example more in Numeration (if you pleafe, that in the Table) viz. 678987654321 , which is, according as is there fignified.

Six Hundred Seventy Eight Thoufand Millions,
Nine Hundred Eighty Seven Nillions,
Six Hundred Fifty Four Thoufand,
Three Hundred Twenty One Units. Of any propofed Species or Quantities whatfoever.

And here it may be obferved, that every third Figure from the Place of Units, bears the Name of Hundreds; which fhews that if any great Sum be parted, or rather diftinguifhed into Periods, of Three Figures in each Period (as in the foregoing Table), it will be of good Ufe to help the young Learner in the eafier valuing and expreffing that Sum.

> Sect. 2. Of altition. Pofulate or Petition.

That any given \$pumber may be increafed or made more, by putting another 3 Rumber to it.
Gooition is that Rule by which feveral Numbers are collected and put together, that fo their Sum or Total Amount may be known.

In this Rule Two things being carefully obferved, the Work will be eafily performed.

1. The firft is the true placing of the Numbers, fo as that each Figure may ftand directly underneath thore Figures of the fame Value, viz. place Units under Units, Tens under Tens, and Hunareds under Hundreds, \&c.

Then underneath the loweft Rank (always) draw a Line to feparate the given Numbers from their Sum when it is found.

Example. If thefe Numbers 54327 , and 265 I, were given to be added together, they muft be placed

$$
\text { Thus, }\left\{\begin{array}{l}
54.327 \\
265 \mathrm{I}
\end{array}\right.
$$

2. The fecond thing to be obferved is the due Collecting or Adding together each Row of Figures that ftand over one another of the fame Value: And that is thus performed.

> Rule.

Always begin your Addition at the Place of Units, and Add together all the Figures that fland in that Place, and if their Sum be under Ten, fet it down below the Line underneath it's own Place; but if their Sum be more than Ten, you muft fet down only the overplus, or odd Figure above the Ten (or Tens) and fo many Tens as the Sum of thofe Units amount to, you muft carry
to the place of Tens; Adding them and all the Figures that fand in the place of Tens together, in the fame manner as thofe of the Units were added; then proceed in the fame order to the place of Hundreds, and fo on to each place until all is done.

The Sum arifing from thofe Additions will be the Total Amount required.

## $E X A M P L E 1$.

Let it be required to find the Sum of the aforefaid Numbers, viz. $\left\{\begin{array}{l}54327 \\ 2651\end{array}\right.$

56978 the Sum required.
'Beginning at the place of Units, I fay 1 and 7 is 8 , which being lefs than 10, I fet it down (according to the Rule) underneath is own place of Units; and then proceed to the place of Tens, faying 5 and 2 is 7 , which being lefs than IO, I fet it down underneath its own place of Tens, and proceed to do the like at the place of Hundreds, and then at Thoufands; fetting each of their Sums underneath their own refpective places: Laftly, becaufe there is not any Figure in the lower Rank to be added to the Figure 5, which ftands in the place of Ten Thoufands, in the upper Rank, I therefore bring down the faid 5 to the reft, placing it underneath its own place, and then I find that $54327+2651=56978$, the true Sum required.

$$
E X A M P L E
$$

Suppofe it were required to find the Sum of thefe Numbers, $3578+496+742+184+95$. There being placed, as before directed, will ftand as in the Margin. Then beginning (as before) at the place of Uniis, fay 5 and 4 is 9 , and 2 is 11 , and 6 is 17 , and 8 is 25 ; fet down the 5 Units underneath its own place of Units, and carry the 20, or two Tens, to the 496 place of Tens (at which place they are only 2) raying, 2742 and 9 is 11 , and 8 is 19 , and 4 is 23 , and 9 is 32 , and 784 is 39 ; fet down the 9 underneath its own place of Tens, and carry the 30 , or three Tins (which indeed is 300) to the place of Hundreds, at which place they are but 3, 5095 faying, 3 I carry and 1 is 4 , and 7 is II, and 4 is 15 , and 5 is 20 ; here becaufe there is no Figure overplus (as before) I fet down a Cypher underneath the place of Hundreds, and carry the 2 Tens (or rather the 2000) to the place of Thoufands, faying
(as before) 2 I carry and 3 is 5, which being the laft, I fet it down underneath its own place, and all is finifhed. And find the Sum or Total amount to be $5095=359^{8}+49^{6}+742+184+95$.

If this Example be well confidered, it will be fufficient to fhew the ufual Method of Addition in whole Numbers; but to make all plain and clear, I fhall fhew the young Learner the Reafon of carrying the Tens from one Degree or Row of Figures, to the next Superior Degree, which is done purely to fave Trouble, and prevent the ufing of more Figures than are really neceffary, as will appear by the following Method of adding together the fame Numbers of the laft Example.

Thus, add together each fingle Row of Figures by itfelf; as if there were no more but that one Row, fetting down the Sum underneath its own place.

The Sum of the Row of Units, is The Sum of the Row of Tens, is The Sum of the Row of Hund. is The three Thoufand brought down

The Sum or Total Amount as before, is 5095
From hence I prefume it will be eafy to conceive the true Reafon of carrying the aforefaid Tens; and alfo that Cyphers do not augment or increafe the Sum in Addition. (See Page 4.)

I might have here inferted a Lineal Demonftration of this Rule of Addition; but I thought it would rather puzzle than improve a young Learner, efpecially in this place; befides the Reafon of it is fufficiently evident from that Natural Truth of the Whole being Equal to all its Parts taken together. Euclid I. Axiom 19.

That is, the Numbers which are propofed to be added together, are by that Axiom underfood to be the feveral Parts, and their Sum or Total Amount found by Addition is underftood to be the Whole.

And from thence is deduced the Method of proving the Truth of any Operation in Addition, viz. By parting or feparating the given Numbers into Two Parcels (or more, according to the Largenefs of it) and then adding up each Parcel by itfelf: For if thofe particular Sums fo found, be added into one Sum, and that Sum prove Equal or the fame with the Total Sum firft found,
found, then all is right; if not, care muft be taken to difcover and correct the Error.

EXAMPLE.
Add $\left\{\begin{array}{l}5647 \\ 3289 \\ 4016\end{array}\right\}$ The Sum of there Parts is, 12952

The Total Sum of all thefe Parts
$\left.\begin{array}{l}\text { The Sum of each } \\ \text { Parcel put together }\end{array}\right\}$
22465

## Sect. 3. Of פubftaction.

## Pofulate or $P_{\text {etition }}$.

That any Pumber may be diminiffed, or made lefs, by taking another §umber from it.

פubftaction is that Rule by which one Number is deducted or taken out of another, that fo the Remainder, Difference, or Excefs may be known.

As 6 taken out of 9 , there remains 3. This 3 is alfo the Difference betwixt 6 and 9, or it is the Excefs of 9 above 6.

Therefore the Number (or Sum) out of which Subfraction is required to be made, muft be greater than (or at leaft equal to) the Subtrabend or Number to be fubflracled.

Note, This Rule is the Converfe or Direef contrary to Addition.

And here the fame Caution that was given in Addition, of placing Figures directly under thofe of the fame Value, viz. Units under Units, Tens under Tens, and Hunäreds under Hundreds, \&c. muft be carefully obferved; allo underneath the loweft Rank there muft be drawn a Line (as before in Addition) to feparate the given Numbers from their Difference when it is found.

Then having placed the leffer Number under the greater, the Operation may be thus performed.

R U I, E.:
Begin at the Right Hand Figure or place of Units (as in Addition) and take or fubftraEt the lower Figure in that place C 2
from the Figure that flands over it, fetting down the Remainder or Difference underneath its own place. If the Two Figures chance to be Equal, fet down a Cypher: But if the upper Figure be lafs than the lower Figure, then you mu/t add 10 to the upper Figure, on mentally call it 10 more than it is, and from that Sum fubftract the lower Figure, fetting down the Remainder (as before directed). Now becaufe the 10 thus added, was Juppos'd to be borrowed fxem the next fuperior place (viz. of Tens) in the upper Figures, thotefore you muft either call the upper Figure in that place from uhbence the 10 was borrowed, one lefs than really it is, or elfa (which is all one, and mof ufual) you muft call the lower Figure in that place one more than it really is, and then proceed to Subftraction in that place, as in the former; and fo gradually on from one Row of Figures to another until all be done.

## E $X A M P L E$ r.

Let it be required to find the Difference between 6785 , and 4572 . That is, let 4572 be fubftracted from 6785 .

Thefe Numbers being placed down, as before directed, will ftand
Thus $\left\{\begin{array}{l}6785 \\ 4572\end{array}\right.$

Beginning at the place of Units, take 2 from 5 and there will remain 3 which muft be fet down underneath its own place, and then proceed to the place of $T_{e n s}$, taking 7 from 8, and there will remain I , to be fet down underneath its own place; again, at the place of Hundreds, take 5 from 7 , and there remains 2, which fet down, as before; laftly, take 4 from 6 and there will remain 2, which being fet down underneath its own place, the Work is finifhed, and the Difference fo found will be $2213=6785-4572$, as was required.

$$
E X A M P L E
$$

The Difference between 5849 , and 7496 is required, Having placed the Numbers as in the Margin, begin at the place of Units (as before) and fay of from 6 cannot be, but 9 from 16 and there remains 7 , to be fet down under its own place ; next proceed to the place of Tens, where you muff now pay the 10 that was borrowed to
make the 6, 16, by counting the upper Figure 9 in that place one lefs than it is, faying 4 from 8 and there remains 4 , or elfe (which is the moft practifed) fay I I borrowed and 4 is 5
from 9 and there remains 4 , to be fet down under its own place (as before); again, at the place of Hundreds, fay 8 from 4 that cannot be, but 8 from 14 there will remain 6 to be fet down; and here I have borrowed 10 (as before) which muft be paid in the fame manner as the other 10 was, viz. either by calling the 7 in the upper Rank but 6, faying 5 from 6 there remains 1 , or elfe by faying I borrowed and 5 is 6 from 7 and there remains r, which being fet down under its own place all is done, and the Difference required will be $1647=7496-5849$.

$$
\begin{gathered}
E X A M P L E \\
\text { From } 830476 \\
\text { Taike } 741068 \\
\text { Remains } 89408
\end{gathered}
$$

By this Example you may perceive that Cyphers in the Subtrabend, viz. in the Numbers to be fubfracted, do not diminifh the Number from whence Subftrattion is made. See Page 4.

Thefe Three Examples, I prefume, may be fufficient to fhew the young Learner the Method of Subftracting whole Numbers; as for the Reafon thereof it is the fame with that of Addition, Page 10, viz. of the Whole being Equal to all its Parts taken together.

That is, in this Rule the Number from which Subfiraction is required to be made, is underftood to be the Whole, and the Subtrabend or Number to be fubfiracted, is fuppofed to be a part of that Whole; confequently if that Part be taken from the Whole, the Remainder will be the other part.

From hence is deduced the common Method of proving SubAraction, by adding together the Subtrabend and the Remainder. For if the Sum of thofe Two (which are here called Parts) be equal to the Number from whence Subfraction was made (which is here called the Whole) then the Work is right ; if not, care muft be taken to difcover and correct the Error.

## E $X A M P L E$.



Or from the abovefaid Reafon, it will be eafy to conceive how to prove the Truth of Subftraction by Subftraction.

For if from there be taken

59435 being here the whole, 47608 as part of that whole ;

11827 the other part (as before)
And if from 59435 the whole, there be fubfiracted the laft part, viz.

11827
there will remain 47608 the firf part, or Number which was required to be firft Subftracted.

| From 75643 |  |
| ---: | ---: |
| Take 9000 | From 7000000 |
| Take 986432 |  |
| emains 66643 |  |

## Sect. 4. Of MDultiplication.

Qultiplitation is a Rule by which any given Number may be fpeedily increafed, according to any propored Number of Times.

That is, One Number is faid to Multiply another, when the Number multiplied is fo often added to itfelf, as there are Units in the Number multiplying; and another Number is produced. (Euclid 7.. Def. 15.)

To perform Multiplication, there is required two given Numbers, called Factors.

The Firft is thê Number to be multiplied, which is generally pue the greater of the Two Numbers, and is commonly called the Multiplicand.

The other is that Number by which the Firft is to be multiplied, and is ufually called the Multiplicator or Multiplier ; and this denotes the Number of Times that the Multiplicand is required to be added to itfelf. For fo many Units as are contained in the Multiplier, fo many times will the Multiplicand be really added to itfelf (as per Euclid above). And from thence will arife a Third Number, called the Product. But in Geometrical Operations it is called the Rectangle or Plain.

For inftance; fuppofe it were required to increafe 6 four times, that is, to multiply 6 into or with 4. Thefe two Numbers are to be fet (or placed) down as in Addition or Subfraction.

Thus

Thus $\left\{\begin{array}{ll}6 & \text { Multiplicand, } \\ 4 & \text { Multiplier, }\end{array}\right\}$ or Faizors.
Product 24 viz. 4 times 6 is 24, as plainly appears by Addition, viz. By fetting down 6 four times, and then adding them together into one Sum,

Thus
From bence it is evident, that Multiplication is only a Concife or Compendious Way of adding any given Number to itfelf, fo often as any Number of Times may be propofed.

Before any Operation can be readily performed in Multiplication, the feveral Products of the fingle Figures one into another mult be perfectly learn'd by Heart, viz. That 2 times 2 is 4, that 3 times 3 is 9 , and 3 times 6 is $18, \mathcal{E}^{\circ}$. According as they are expreffed in the following Table; wherein I have omitted multiplying with 2, it being fo very eafy that any one may do it.

Multiplication Table.

| $3 \times 3=$ | $4 \times 4=16$ | $5 \times 5=25$ | $6 \times 6=36$ | $7 \times 7=4$ | $8 \times 8=64$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $3 \times 4 \doteq 12$ | $4 \times 5=20$ | $5 \times 6=30$ | $6 \times 7=42$ | $7 \times 8=56$ | $8 \times 9=72$ |
| $3 \times 5=15$ | $4 \times 6=24$ | $5 \times 7=35$ | $6 \times 8=48$ | $\underline{7 \times 9=63}$ | 9+0 $=8$ |
| $3 \times 6=18$ | $4 \times 7=28$ | $5 \times 8=40$ | $\underline{6 \times 9=541}$ |  |  |
| $3 \times 7=21$ | $4 \times 8=32$ | $5 \times 9=45$ |  |  |  |
| $3 \times 8=24$ | $4 \times 9=36$ |  |  |  |  |

I think it needlefs to give any Explanation of this Table; for if the Signs and their Significations be well underftood, (vide page 5) it muft needs be eafy. Only this may be noted, that $4 \times 3=3 \times 4$, or $7 \times 5=5 \times 7$, छٔ $c$.

That is, 3 times 4 is the fame with 4 times 3 , or 5 times 7 is the fame with 7 times $5, \mathcal{E}^{\circ} \mathrm{C}$. The like mult be underftood of all the reft in the Table.

And when all thefe fingle Products are fo perfectly learn'd by Heart, as to be faid without paufing; you may then proceed (but not 'till then) to the Bufinefs of Multiplication; which will be found very ealy, if the following Rule (and Examples) be carefully obferved.

## R U L E.

Always begin with that Figure which fands in the Units place with the Multiplier, and with it multiply the Figure which flands
in the Units place of the Multiplicand; if their Product be lefs than Ten, fet it down underneath its own place of Units, and proceed to the next Figure of the Multiplicand. But if their Product be above Ten (or Tens) then fet down the Overplus only (or odd Figure, as in Addition) and bear (or carry) the faid Ten or Tens in mind until you have multiplied the next Figure of the Multiplicand, with the fame Figure of the Multiplier; then to their Product add the Ten or Tens carried in mind, fetting down the Overplus of their Sum above the Tens, as before: and fo proceed on in the very fame manner, until all the Figures of the Multiplicand are multiphed with that Figure of the Multiplier.

$$
E X A M P L E^{\prime} \mathrm{i} .
$$

Suppofe it were required to multiply 3213 into or with 3.

$$
\begin{aligned}
& 3213 \text { Multiplicand }\} \text { or Factors. } \\
& 3 \text { Multiplier, }
\end{aligned}
$$

Product 9639
Beginning at the Units place, fay 3 times 3 is 9 , which, becaufe it is lefs than Ten, fet down underneath its own place and proceed to the next place of Tens, faying 3 times I is 3 , which fet down underneath its own place; then to the next place, viz. of Hundreds, faying 3 times 2 is 6 , which fet down, as before; laftly, at the place of Thoufands, fay 3 times 3 is 9 , which being fet down underneath its own place, the Operation is finifh'd; and the true Product is $9639=3213 \times 3$, as was required.

$$
E X A M P L E
$$

Let it be required to multiply 8569 into 8 . Set down thefe Numbers as before,

$$
\text { Thus }\left\{\begin{array}{r}
856 \\
8
\end{array}\right.
$$

$6855^{2}$
Beginning at the Unitstace, fay 8 times 9 is 72 , fet down the 2 ingderneath its own place of Units, and bear the 70 , or 7 Tens in mind, and proceed to the next Figure of the Multiplicand (at which place the 7 Tens are only 7) faying 8 times 6 is 48 , and the 7 carried in mind is 55 ; fet down the odd 5 underneath its own place of Tens, and carry the 50 (which is seally 500) to the next place (viz. of Hundreds) at which place it is only 5 , where fay, 8 timot 5 is 40 , and the 5 carried in mind is 45 ; fet down the 5 ufiderneath its own place, and carry the 40 or 4 Tens (which is really 4000 ) to the
next place, viz. of Thoufands, faying, 8 times 8 is 64 , and 4 carried in mind is 68. (Now this being the laft Place or Figure to be multiplied) Set down the whole Product 68, and the Work is done.

So that, $8569 \times 8=68552$, the Product required.
Now the Reafon of this and all other the like Operations, may be eafily conceived from this which follows.
$\left.\begin{array}{r}8569 \\ 8\end{array}\right\}$ The fame Factors as before.
Here 8 times 9 is $7^{2}$, as before, becaufe the 9 ftands in the Units place.

Now here it is not really 8 times $6=48$, but it is 8 times $60=480$, becaufe the 6 ftands in the place of Tens.
And here it is not 8 times $5=40$, but it is really 8 times $500=4000$, becaufe the 5 ftands in the place of Hundreds.

Laftly, becaufe the 8 in the Multiplicand ftands in the place of the Thoufands, it is therefore 8 times $8000=64000$, and not 8 times $8=64$.

The Sum of the particular ProduEfs, which gives the true Product, as before.

By what hath been already faid, with a little Confideration had to the Examples, I prefume the Learner may eafily underftand how to multiply whole Numbers with any fingle Figure. And when it is required to mulliply with more than one; then fo many Figures as there are in the Multiplier, fo many particular Producis there mult be.

That is, all the Figures of the Multiplicand muft be multiplied with every fingle Figure of the Multiplier, as if there were but one fingle Figure: and the Sum of all thofe particular Products, will be the true Product required. But in thofe Operations, great Care muft be taken in ferging down the particular Products (which arife by each multiplying Figure) in their proper places. Which will be eafily done, if the following Directions be carefully obferved.

Vir $\left\{\begin{array}{c}\text { Always place the firft Figure (or Cypher) of every: }\end{array}\right.$
Viz. $\{$ particular Product, directly underneath the muliiplying: Figure. Or thus:
The Firgt Figure (or Cypher) of the fecond particular Product muft fand directly under the fecond Figure (or place) of the Firfe Product; and the Firf Figure (or Cypher) of the Third
particular Product, muft fland directly underneath the Third Figure of the Firft Product: And fo on until all is done.

Now the Reafon of placing the firft Figure of every particular Product in their Order, will be very obvious to any one that confiders the laft Example; wherein the Cyphers are only fet down to thew the true Diftance of the firt Figure in each particular Product from the Units place. And altho' it is not ufual to fet down Cyphers in this manner ; yet they are always fuppofed to be there: That is, their Places are always left void, as in the two following Examples; wherein I have placed Points inftead of Cyphers.

$$
E X A M P L E 3 .
$$

Let it be required to multiply 78094 , into or with 7563 . $\left.\begin{array}{c}78094 \\ 7563\end{array}\right\}$ Factors. 7563 234282 The Firft particular Product with 468564. The Secorid particular Product with

$$
E X A M P L E
$$

Suppofe it be required to multiply 57498 into 60008 .


Here you may obferve, that I pafs over the Cyphers, and only, take care of placing the firft Product of the laft Figure, viz. of 60000 according to the foregoing Directions.

When there is a Cypher or Cyphers, to the Right-hand eithet of the Multiplicand or Multiplicator, or to both; in that cafe mulliply the Figures as before; negleating the Cyphers until the particular Products are added together; Then to their Sum annex fo many Cyphers as are in either of both she FaEtors. As in thefe:

EXAMPLE


Take a fewe Examples without tbeir Work at large.

$$
\begin{aligned}
75649 \times 579 & =43800771 \\
68700 \times 356 & =24572000 \\
530674 \times 45007 & =38884044718 \\
7901375 \times 30000 & =237041250000 \\
53708000 \times 590700 & =317255518800000 \\
102030405 \times 504030201 & =51426405540261405 \\
987654321 \times 123456789 & =121932641112635269
\end{aligned}
$$

Note, If it be required to multiply any Number with 10, $100,1000,10000, \mathcal{E}^{5}$. it is only annexing the Cyphers of the Multiplier to the Figures of the Multiplicand, and the Work is done.

Thus $\{578 \times 10=5780 . \quad 578 \times 1000=578000$ $\{578 \times 100=57800 . \quad 578 \times 10000=5780000, \& \mathrm{c}$.

Thefe Examples (being well underfood) are fufficient to infruct the Learner all the Varieties that can happen in multiplying of whole Numbers, according to the Method generally practifed: However it may not be amifs to fhew here how Multiplication may be performed (with many Figures) by Addition only.

$$
E X A M P L E:
$$

Let it be required to multiply 879654 into 79863 .
In order to perform this (or any Operation of this kind) by Addition only; you muft make a Tariffa or fmall Table of the given Multiplicand, in this manner:

Firf, Make a fmall Column, and in it place gradually downward the Nine fingle Figures; viz. 1, 2, 3, 4, 5, ₹' $\boldsymbol{c}_{0}$

Then againft the Figure 1, fet duwn the Multiplicand (which in this Example is 879654) and againft the Figure 2, fet down the double of the Multiplicand, found by adding it to itfelf; To this double add the Multiplicand, fetting down their Sum againft the Figure 3. And fo proceed on by a continued Addition until there be Ten times the Multiplicand in the Table; which if the Work is true, will be the Multiplicand itfelf with a Cypher to the Right-hand of it, as in the annexed Table. This being done, it will be eafy to conceive, that the Figures in the fmall Column of the Table, do refpectively reprefent thofe of the Multiplier: And that the Numbers againft any of thofe Figures in the fmall Column, will be the true Product of the Multiplicand agree-

$$
\begin{array}{|r|r}
1 & 879654 \\
2 & 1759308 \\
3 & 2638962 \\
4 & 3518616 \\
5 & 4398270 \\
6 & 5277924 \\
7 & 6157578 \\
8 & 7037232 \\
9 & \frac{7916886}{10} 8706540 \\
\hline
\end{array}
$$ ing to any Figure of the Multiplier; as planly appears by the Work of this Example

Then

$$
\left.\begin{array}{c}
879654 \\
79863
\end{array}\right\} \text { The FaEtors as before. }
$$



Note, This Method of Tabulating the Multiplicand, is both eafy and certain; being neither fubject to Errors, nor burdenfome to the Memory, and therefore in large Calculations it may be found very ufeful. But for common Practice the ufeful Method (as in Page 18, \&rc.) is beft, and to be preferred before this.

Moft Mafters that teach (and feveral Authors that write of) Arithmetick, do teach to prove the Truth of Multiplication, by cafting away all the Nines that are contained in both the Faciors, and their Product; but becaufe that Method is very erroneous, as might be eafily fhewed; I fhall therefore omit inferting it, and leave the Proof of Multiplication to the next Section, wherein (I prefume) the Reafon and Proof, both of it, and Divifom, will plainly appear.

## Sect. 5. Of Dibifion.

gDififion is a Rule by which one Number may be fpeedily fubftracted from another, fo many times as it is contained therein.

That is, It fpeedily difcovers how often one Number is contained (or may be found) in another: And to perform that there are required Two Numbers to be given.

1. The one of them is that Number which is propofed to be divided, and is called the Dividend.
2. The other is that Number bv which the faid Dividend is to be divided, and is called the Divifor.

And by comparing thefe Two, viz. the Dividend and the Divifor together, there will arife a Third Number, called the Quotient; which fhews how often the Divifor is containod in the Dividend, or into what Number of Equal Parts the Dividend is then divided. Therefore,

Divifion is by Euclid fitly termed the meafuring of one Number by another, viz. one Number is faid to meafure another by that Number, which when it multiplies, or is multiplied by it, it produceth. Euclid 7. Def. 23 .

And, if a Number meafuring another, multiply that Number by which it meafureth, or be multiplied by it, it produceth the Number which it meafureth. Euclic 7. Axiom 9.

That is to fay, If that Number which divides another (called the Divifor) be multiplied with the Number which is produced by Divifion (called the Quotient) their Product will be the Number divided or Dividend. Whence it follows, that Divifion and Multiplication are the Converfe and Direct Contrary one to another (as Subfiraction is to Addition) and do mutually prove the Truth of each other's Operations.

I flall therefore make choice of the foregoing Examples in Multiplication, in order (as I prefume) to render the Bufinefs of Divizion more plain and eafy.

Firft, Let it be required to find how often 6 is contained in 24, That is, to divide 24 by 6 .
N.B. Always place down the given Numbers in this Order; Firft fet down the Divifor, and to the Right-hand of it draw a crooked Line; then fet down the Dividend, and to the Right of it draw another crooked Line, in which mult be placed the Quotient Figure, or Figures as they become found.

## Dividend.

Thus Divifar 6) 24 (4 the 2uotient.
Here I confider how many times 6 there is in 24, and find it $\hat{A}$, viz. 4 times 6 is 24 , therefore 4 is the true Quotient or Anfwer required.

This is apparent by Subfraction, as in the Margin; where 24 the Dividend is fet down, and from it 6 the Divifor continually fubftraEled fo often as it can be, which is juft 4 times. Therefore 4 is the true Quotient or Anfwer required.


Corollary.
From hence it is evident; that Divizion is but a concife or compendious Method of fubftraEting one Number from another, fo often as it can be found therein; for if the Divifor be con= tinually fubftraeled from the Dividend, accounting an Unit (or I) for each time it is fubftracted (as above) the Sum of thofe Units will be the Quotient.

All Operations in Divifion do begin contrary to thofe of IMuitiplication, viz. at the Firft Figure to the Left-hand, or that of the higheft Value, and decreafe the Dividend by a repeated SubftraEtion of each Product arifing from the Divifor when multiplied into the Quotient Figure. And the only difficulty in $D_{i-}$ vifon of whole Numbers (or indeed of any Numbers) lies in making choice of fuch a Quotient Figure, as is neither too big, nor too little; and that may be eafily obtained by oblerving the following Rule, which hath two Cafes.

## R U L E.

Cale 1. As often as the Firf Figure of the Divifor is taken from the Firft Figure of the Dividend: So often muft the Second Figure of the Divifor be taken from the Second Figure of the Dividend, when it is joined with what Remains of the Firft. And as often muft the Third Figure of the Divifor be taken from the Third Figure of the Dividend, E\%c.

But if the Firft Figure of the Divifor cannot be taken from the Firft Figure of the Dividend. Then;
Chap. 2. Of Dinifiall. 23

Cafe 2. So often as the Firft Figure of the Divifor is taken from the Two Firft Figures of the Dividend, fo often muft the Second Figure of the Divifor be taken from the Third Figure of the Dividend, when it is joined with what remained of the Second: And fo often muft the Third Figure of the Divifor be taken from the Fourth Figure of the Dividend, Esc.

That is, the 2 uotient Figure muft be fuch, as being multiplied into the Divifor, will produce a Product equal to fuch a part of the Dividend as is then taken for that Operation: But if fuch a Product cannot be exactly found, then the next lefs muft be taken, and ordered, as in the following Examples: of which let that in Page 16 be the firft, wherein there was given 8569 the Multiplicand, and 8 the Multiplier. To find the ProduEt $6855^{2}$. Let us here fuppofe the faid ProduEt 68552, and 8 the Multiplier, both given; thence to find the Multiplicand. That is, Let it be required to divide 68552 by 8.

## Dividend

## Divifane $6855^{2}$ ( 2uotient when found.

According to the Rule, Cafe I: I compare 8 the Divifor with 6 the Firft Figure of the Dividend, and finding I cannot take it from that, I then confider (by Cafe 2.) how often 8 can be taken from 68, the two firft Figures of the Dividend, and find it may be taken 8 times; for 8 times 8 is 64 , being the greateft Product of 8 (into any Figure) that can be taken from 68. I therefore place 8 in the 2 uotient, and with it multiply 8 the Divifor, fetting down their Product underneath the faid Two Firft Figures of the Dividend, fubftracting it from them, and then the Work will ftand


In order to a Second Operation, I make a Point under the next Figure of the Dividend, vix. under the 5, and bring it down underneath in its ginn place to the Remainder 4, which will by that means become 45. Then I confider how many times 8 can be taken from 45, and find it may be 5 times; for 5 times 8 is 40 , I therefore place 5 in the 2 uotient, and with it multiply 8 the Divifor, fetting down and fubftracting their Product, as before. Then the Work will ftand

## Thus 8) $6855^{2}(85$

| 68. |
| ---: |
| -45 |
| 40 |

For a Third Operation, I make a Point under the next Figure of the Dividend, viz. under the 5, and bring it down, as before, proceeding in all refpects, as before; and then the Work will ftand

Thus 8) $68552(856$


Laftly, I point and bring down the 2, viz, the laft Figure of the Dividend to the Remainder 7, which will then become 72, and proceeding as in the other Operations, I find that 8 the Divijor can be taken juft 9 times from 72, and the Work is finifhed, and will ftand


The true 2 votient is found to be 8569 , being exactly the Eighth part of $6855^{2}$, or the Multiplicand of the propofed Example of Multiplication. As was required.

The Reafon of the Operations will be very plain to any one that will a little confider of it, as follows:

Divisor 8) 68552 (8000. The Firft Quotient Figure.

Subtract
This Product of the Divifor into the Quotient is 64000 , viz. 8 times 8000 ; the Quotient Figure being always of the fame Value or Degree with that Figure under which the Unit's place of its Product fads.

Divisor 8)
Subfract
(500. The Second Quotient Figure. And here the Product is 4000 , viz: 8 times 500, not 8 times 5 .
Divisor 8) $15 / 52^{2} \quad$ ( 60 . The Third 2 quotient Figure. Subtract $\left|4^{8}\right| 8 \left\lvert\, \begin{gathered}\text { Also here the ProducE is } 480 \text {, ri, } \\ \text { times } 60 \text {, for the Reafors abovefaid. }\end{gathered}\right.$
Divifor 8) $\quad|7|^{2} \quad$ (9. The Fourth Quotient Figure.
$72\left\{\begin{array}{c}\text { Now here the Product is but } 72, \text { viz. } \\ 9 \text { times } 8, \text { because the } 9 \text { funds in the place }\end{array}\right.$
Remains viz. $8000+500+60+9=8569$, as before.

If the Process of this Example be well confidered and compared with that of Multiplication, Page 17, it will evidently appear to be only the Converfe of that; for the particular Products are alike in both, only that which is last there, is fir ft here; there they are added, here they are fubffracted. So that whoever underftands the true Reajon of the one, mut needs underftand the Reafon of the other, and then Divifion will become very eafy, although the Divijor confifts of feveral places of Figures.

$$
E X A M P L E .
$$

Let it be required to divide 590624922 by 7563 .
Dividend.
Divifor 7563) 590624922 (
${ }^{3}$ This plain at the firft fight, that 7563 the Divifor, cannot be taken from 5906, the like Number of Figures in the Dividend.

Therefore, by the Second Cafe of the Rule (Page 23.) there muff be allowed Five Figures of the Dividend, viz. 59062 for the Firft Operation or Quotient; that fo the First Figure 7 of the Divifor may be taken out of the two Firft Figures, viz. 59 of the Dividend, \&c.

Then I proceed (per Cafe 2.) and confider how often 7 may be taken from 59, and find it may be taken 8 times, for 8 times 7 is but 56 , which I mentally fubfract from 59, and there remains 3; to this 3 I mentally adjoin the Third Figure of the Dividenc, viz. 0 , which makes it 30, out of which I mult take the Second Figure of the Divifor, viz. 5, fo often as I took the 7 from 59 , which was 8 times: But that cannot be, for 8 times 5 is 40 , which is more than 30 , therefore 8 is too big a Figure to be placed in the Quotient; yet, hence I conclude, that the next lefs, viz. 7 may be taken without any further Trial. I therefore place 7 in the 2 uotient, and with it multiply the Divijor, fetting down their Producf under the Dividend, and fubfract it from thence, as in the other Example, and then the. Work will ftand


In order to a Second Operation, I make a Point under the next Figure of the Dividend, viz. under the 4 , and bring it down to the Remainder 6121, which will then become 61214, with which I proceed in all refpects as I did before with the 59062 , and find the next Quotient Figure will be 8, with which I multiply the Divifor, \&ce, and fubftraif their Product from the faid 61214. Then the Work will ftand


To this Remainder 710, I point and bring down the next Figure of the Dividend, viz. 9, which makes it 71 C 9 ; now becaufe the Divifor $75^{6} 3$ cannot be takep from 7109 , I therefore place a Cypber in the ${ }^{2}$ uotient.

And this muft always be carefully obferved, viz. That for every Figure or Cypher, which is brought down from the Dividend, in order to a new Operation, there muft always be either a Figure or Cypher, fet down in the Quotient. Then the Work will ftand


To this 7 r 09 , I bring down another Figure of the Diviaiend, viz. 2 , and then it will become 71092 ; then I confider how often 7 can be taken from $71, \varepsilon^{\circ}$ c. (juft as at the firft Operation,) and find it may be taken 9 times, therefore I fet down 9 in the Quotient, and with it multiply the Divifor, fetting down and fubftracting their Product, as before; Then the Work will ftand

| Thus 7563$)$$590624922(7809$ <br> $52941 \ldots$ |
| :---: |
| $\frac{61214}{60504}$ |
| $\frac{71092}{68067}$ |
| -3025 |

To this Remainder 3025, I point and bring down the laft Figure 2 of the Dividend, which makes it 30252 ; then proceeding in all refpects as before, I find the 2uotient Figure to be 4, with it I multiply the Divifor, fetting down and fubfiracting their Product as before, and then the Work will ftand

Thus 7563 ) 590624922 ( 78094
$52941 \ldots$.
61214
60504

| 71092 |
| ---: |
| 68067 |
| -30252 <br> $3025^{2}$ <br> $-100000)$ |

Here the Work is ended, and I find the 2uotient to be 780942 being the true Muttiplicand of the propofed Example of 'Multiplication, Page 18.

That is, $75^{6} 3$ is contained in 590624922 juft 78094 times, $\varepsilon 0^{\circ}$ c:

If the Work of this Example be confidered and compared with the Rule (Page 22.) the whole Bufinefs of Divifion will be eafy; for indeed the only Difficulty (as I faid before) lies in making choice of a true Quotient Figure, which cannot well be done according to the Common Method of Divifion, without Trials, yet thofe Trials need not be made with the whole Divifor, (as appears by this laft Example) for by the two Firft Figures of the Divifor all the reft are generally regulated; except the Second Figure chance to be 2,3 , or 4 , and at the fame time the Third Figure be 7, 8, or 9, then indeed refpect muft be had to the Third Figure, according as the Rule directs.

However, if thofe Trials are thought too troublefome, they may be avoided, and the fame Quotient Figure may both eafily and certainly be found by help of fuch a fmall Table made of the Divifor, as was of the Multiplicand in Page 20.

$$
E X A M P L E
$$

Let it be required to divide 70251807402 by 79863. See the Example of Multiplication, Page 20 , and as there directed make a Table of the Divifor 79863,
Thus,


This Method of Tabulating the Divifor may be of good Ure to a Learner; efpecially until he is well practifed in Divifion; yea, and even then if the Divifor be large, and a Quotient of many Figures be required; as in refolving of high ॠquations, and calculating of Alronomical Tables, or thofe of Intereft, Eic.

Hitherto I have made choice of Examples wherein the Dividend is truly meafured or divided off by the Divifor, without leaving any Remainder, being exactly compofed of the Divifor and Quotient. But it moft ufually falls out, that the Divifor will not exactly meafure the Dividend; in which cafe the Remainder (after Divifion is ended) muft be fet over the Divifor with a fmall Line betwixt them adjoining to the Quotient.

$$
E X A M P L E 5
$$

Suppofe it were required to divide 379 by 5 .

$$
\text { 5) } 379 \text { ( } 75 \frac{4}{5} \text { t the Remaindel }
$$

$$
35
$$

Remains (4)

$$
E X A M P L E 6
$$

Again, Let it be required to divide 43789 by 67 .
67) 43789 ( $653 \frac{28}{6} \frac{8}{7}$ the true 2 2uotient required, 402..
$35^{8}$
335
239
201
Remains (38)
How fuch Remainders thus placed over their Divifors (which are indeed Vulgar Fractions) may be otherwife managed, fhall be fhewed farther on.
N.B. When the Divifor happens to be an Unit, viz. y, with a Cypher or Cyphers annexed to it, as $10,100,1000, \mathrm{Ev}^{\circ} \mathrm{c}$. Divifron is truly performed by cutting off with a Point or Comma, fo many Figures of the Dividend as there are Cyphers in the Divifor; then are thofe Figures fo cut off to be accounted a Remainder, and the reft of the Figures in the Dividend will be the true Quotient required, becaufe an Unit or I doth neither multiply nor divide.
$E X A M P L E 7$.
Let it be required to divide 57842 by 100. The Work may ftand thus, 100) 578,42 the 2 uotient required; or thus 100) 57842 ( $5788_{100}^{42}$ the fame as before,

Hence it follows, that if any Divifor have Cyphers to the Right-hand of it, you may cut off fo many of the laft Figures
in the Dividend, and divide the other Figures of the Dividend, by thore Figures of the Divifor that are left when the Cyphers are omitted. But when Divizion is ended, thofe Cyphers fo omitted in the Divifor, and the Figures cut off in the Dividends are both to be reftored to their own places.

## $E X A M P L E 8$.

Suppofe it were required to divide 67546 g by 5400. 5400) 675469 ( 125
54..

135
108

274
560
Remains (4) But the true Remainder is $4^{5} 9$.
Confequently the true Quotient is $\mathbf{1 2 5 4 0 9} \mathbf{3}+$
As to the manner of proving the Truth of any Operation, either in Multiplication or Divifion, I prefume it may be eafily underfood, by what is delivered in Page 21, compared with the three firt Examples of Divifion; for from thence it will be ealy to conceive, that if the Divifor and Quotient be multiplied together, their Product (with what Remains after Divifion being added to that Product) will be equal to the Dividend. As in the Fifth Example, where the Dividend is 373, the Divifor is 5, the Quotient is 75, and the Remainder. is 4 .

I fay, $75 \times 5=375$, to which add the Remainder 4 , it will be 379 .

Again, in the Sixth Example, the Divifor is 67, the Quotient is 653 , and the Remainder is 38 .

Then $653 \times 67=4375^{1}$, and $43751+38=43789$ the Di- $^{2}$ vidend, \&c.

There are feveral ufeful Contrattions, both in Divifion and Multiplication, which I have purpofely omitted until I come to treat of Decimal Arithmetick. Allo I have omitted the Bufinefs of Evolution or Extracting of Roots, until further on; and fQ Mall conclude this Chapter with a few Examples of Divifion unwrought at large, leaving them for the Learner's Practice.

$$
\begin{array}{rr}
579) & 43800771 \\
\text { Or } 75649) & 43^{800771}\left(\begin{array}{l}
75649 . \\
579 .
\end{array}\right.
\end{array}
$$

$$
\begin{aligned}
45007) & 23884044718(530674 . \\
\text { Or } 530674) & 23984044718(45007 . \\
356) & 244572000(687000 . \\
59000) & 57659066400(967434 . \\
10000) & 679543820000(67954382 . \\
79) & 282016\left(3569^{\circ} .5 .\right.
\end{aligned}
$$

## C H A P. III.

Concerning gadition and Sulltation of Numbers of different Denominations, and bow to reduce them from one Denomination to another.

## S E C T. 1.

## 1. Of Englifh Coin.

THE leaft Piece of Money ufed in England is a Farthing, and from thence arifeth the reft, as in this Table.


Note, When l. s. d. q. are placed over (or to the Right-band of) Numbers, they denote thofe Numbers to fignify Pounds, Shillings, Pence, and Fartbings.

## l. s. d. $q$.

As 35106 2. Or 35 l. 10s. $6 \frac{1}{2} d$. Either of thefe do fignify 35 Pounds, 10 Shillings, 6 Pence, 2 Farthings.

The fame muft be underftood of all the following CbaraEters, belonging to their refpective Tables, viz. Of Weights, Meafures, \&c.

## 2. Troy Weight.

The Osiginal of all Weights ufed in England, was a Corn of Wheat gathered out of the middle of the Ear, and being well dried, $3^{2}$ of them were to make one Penny Weight, 20 Penny Weights one Ounce, and 12 Ounces one Pound Troy. Vide Statutes of 51 Hen. III. $3^{1}$ Edw. I. 12 Her. VII.

But in later Times it was thought fufficient to divide the aforefaid Penny Weight into 24 equal Parts; called Grains, being the leaft Weight now in common Ufe; and from thence the reft are computed as in this Table.


Befides the common Divifons of Troy Weight, I find in Anglice Notitia, or, The Prefent State of England, Printed in the Year 1699, that the Moneyers (as that Author calls them) do fubdivide the Grain.

> 24 Blanks $=1$ Periot.
> Thus $\left\{\begin{array}{l}20 \text { Periots }=1 \text { Droite。 }\end{array}\right.$
> 24 Droites $=1$ Mite.
> 20 Mites $=1$ Grain, \&ic. às beforè.

## 3. Apotbecaries Weigbts.

The Apotheraries divide a Pound Iroy, as in this Table. Gr. Grain.
$20=1 \exists$ Scruple
$60=3=13$ Dram
$480=24=8=1 \xi$ Ounce
${ }_{2} 60=288=9^{6}=12=1 \mathrm{HT}$ Troy, the fame as before.
By there Weights the Apotbecaries compound their Medicines: but buy and fell their Drugs by Averdupois Weight.

## 4. Avex̧dupois Weight.

When Averdupois Weight became firft in UJe, or by what Law it was firft fettled, I cannot find out in the Statute Books; but on the contrary, I find that there flould be but one Weight (and one Meafure) ufed throughout this Reaim, viz. that of Troy, (Vide 14 Ed. III. and 17 Ed. III.) So that it feems (to me) to be firft introduced by Cbance, and fettled by Cuftom, viz. from giving good or large Weight to thofe Commodities ufually weighed by it, which are fuch as are either very Coarfe and Drefly, or

Chap. 3. Of đCleighty, Meafures, \&c.
very fubject to wafte; as all kind of Grocery Wares. And Pitch, Tar, Rofin, Wax, Tallosu, Flax, Hemp, \&cc. Copper, Tin, Steel, Iron, Lead, \&c. Alfo Flefh, Butter, Cheefe, Salt, \&c. To thefe and the like (I prefume, it was thought convenient to allow a greater Weight than the Laws had provided, which happen'd to be about a Sixth part more: For I found by a very nice Experiment, that one Pound Averdupois is equal to 14 Ounces, 11 Penny Weights, and $15 \frac{1}{2}$ Grains Troy. And it is now computed as in the following Table:

Drams.
$16=\mathrm{I}^{\mathrm{t}} \mathrm{Oz}$. Ounces.
$256=1 t=1 \mathrm{lb}$ Pounds.
$28672=1792=112=1$ C. Hundred.
$573440=35840=2240=20=\overline{1}$ Tun.

故
And $\left\{\begin{array}{l}14=a \text { Stone } \\ 28=\frac{1}{4} \text { of } C . \\ 56=\frac{1}{2} \text { of } C . \\ 84=\frac{3}{4} \text { of } C .\end{array}\right.$

## 5. Long Meafure.

As the leaft part of Weight came at firft from a Wheat Corn, fo (it is generally faid) the leaft part of a Long Meafure was at firft a Barley Corn, taken out of the middle of the Ear, and being well dried, three of thern in length were to make one Inch; and thence the reft, as in this Table.

```
Barley Corns.
    \(108=36=3=1\) r. Tards.
    \(594=198=16 \frac{1}{2}=5 \frac{1}{2}=1\) P. Poles.
    \(23760=7920=660=220=40=1\) Furlong:
\(190080=63360=5280=1750=320=8=1\) Mile.
```

Note, That forty Poles (or Perches) in Length, and four in Breadth, do make a Statute Acre of Land.

That is, 220 Yards, multiplied into 22 Yards $=4840$ Square Yards are a Statute Acre.

And according to the Tranfactions of the French Aiadery, Anno 1687, a Paris Foot Rajal is $=12,8$ Inches Eurglijh; Six of thofe Feet make a Toife; and 57060 Toifes $=: 5184$ Englifh Feet, are the Meafure of one $\mathrm{D}_{\text {cgree of }}$ a grea! Cicle upon the Surface of the Earth. So that one Degree is 69 Miles and ' 288 Yards, which is very near to our Country-man Mr Norwod's Experiment made betwixt London and York, Arno 1635 who found that $3^{6} 7196$ Feet $=69$ Miles, and 958 Yards do make a Degree.

Degree. And not 60 Miles, according to the common received Opinion and Practice of the Navigators or Seamen.

Hence, according to the French Account, the Circumference of the Earth (fuppofing it to be a true Spherical Figure) is 24899 Englifh Miles.

## 6. Of Liquid Meafures.

All Meafures of Capacity, both Liquid and Dry, were at firft made from Troy Wcight, Vide Statutes 9 H. III. 5 I H. III. 12 H. VII. E®c. wherein it is enacted, that eight Pound Troy Weight, of Wheat, gathered out of the middle of the Ear, and well dried, fhould make one Gallon of Wine Meafure: And that there fhould be but one Meafure for Wine, Ale, and Corn, throughout this Reaim. (Vid. Stat. 14 Ed. III. 15 Rich.II.) But Time and Cuftom hath altered Meafures, as they have done Weights (and perhaps for one and the fame Reafon) for now we have three different Meafures, viz. one for Wine, one for Ale or Beer, and one for Corn.

I have inferted Tables of each, as they are now computed by Cubick Inches, and practifed in the Art of Gauging, \&c.

The common Wine Gallon fealed at Guild-Hall in London; by which all Wines, Brandies, Spirits, Sirong-waters, Mead, Perry, Cyder, Vinegar, Oil, and Honey, \&ic. are meafured and fold; is fuppofed to contain 23 r Cubick Inches, and from thence the reit are computed, as in this Table. Gallons.

But Dr Wybard in his Tectometry, Page 289, doth fuppore the Wine Gallon to contain but 224, or 225 Cubick Inches at the moft, and purfuant to this Account an Experiment was made by Mr Richard Walker and Mr Philip Shales, two General Officers in the Excife. They caufed a Veffel to be very exactly made of Brafs, in Form of a Parallelopipedon, each Side of its Bafe was 4 Inches, and its Depth 14 Inches; fo that its juft Content was 224 Cubick Inches. 'This Veffel was produced at GuildHall in London (May 25, 1688.) before the Lord-Mayor, the Commiflioners of Excife, the Reverend Mr Flamfead, Aftr. Reg.

Mr Halley, and feveral other ingenious Gentlemen, in whofe Prefence Mr Shales did exactly fill the aforefaid Brazen Veffel with clear Water, and very carefully emptied it into the old Standard Wine Gallon kept in Guild-Hall, which did fo exaetly fill it, that all then prefent were fully fatisfied the Wine Gallon doth contain but 224 Cubick Inches. (This notable Experiment 1 faw tried.) However, for feveral Reafons, it was at that time thought convenient to continue the former fuppofed Content of 231 Cubick Inches to be the Wine Gallon, and that all Computations in Gauging fhould be made from thence, as above.

The Beer or Ale Gallon (which are both one) is much larger than the Wine Gallon; it being (as I prefume) made at firft to correfpond with Averdupois Weight, as the Wine Gallon did with Troy Weight: For (as I faid before, Page 33.) one Pound Averdupois is equal to 14 Ounces 12 Penny Weights Troy, very near.

And, as one Pound Troy is in proportion to the Cubick Incbes in a Wine Gallon, fo is one Pound Averdupois to the Cubick Inches in an Ale Gallon. That is, $12: 231:: 14^{\frac{1}{2}} 2: 281 \frac{1}{2}$, very near the Cubick Inches contained in an Ale Gallon, as appears from an Experiment made by one Nicholas Gunton, General Gauger in the Excife, about 41 Years ago, who, by fuch a Veffel mentioned before in the laft Page, did find the Standard Ale- Quart (kept in the Exchequer, Vid. 12 Car. II.) to contain jult $70 \frac{1}{2}$ Cubick Inches, confequently the Ale Gallon muft contain 282 Cubick Inches, and from thence the following Tables are computed.

Ale-Meafure.


Beer Meafure.
Cub. Inches.
> $282=1$ Gallon.
> $2538=9$ F Firkin.
> $5076=18=2=1$ K̈ilderkin.
> $10152=36=4=2=1$ Barrel.
> $15228=54=6=3=1 \frac{1}{2}=1$ Hoghbad.
N. B. This Diftinction or Difference betwixt Ale and BeerMeafure, is now only ufed in London. But in all other Places of England the following Table of Beer or Ale, whether it be ftrong or fmall, is to be obferved, according to a Statute of Excife made in the Year 1689

$$
\begin{aligned}
& \text { Cub. Incbes. } \quad 282=1 \text { Gallon. } \\
& 2397=8 \frac{1}{2}=1 \text { Firkin. } \\
& 4794=17=2=1 \text { Kilderkin. } \\
& 9588=34=4=2=1 \text { Barrel. } \\
& 14382=51=6=3=1 \frac{1}{2}=1 \text { Hoghead. }
\end{aligned}
$$

## 7. Of Dry Meafure.

Dry Meafure is different both from Wine and Ale Meafure, being as it were a Mean betwixt both, tho' not exactly fo; which upon Examination I find to be in proportion to the aforefaid old Standard Wine Gallon, as Averdupois Weight is to Troy Weight; That is, As one Pound Troy is to one Pound Averdupois, fo is the Cubick Inches contained in the old Wine Gallon, to the Cutbick Inches contained in the Dry or Corn Gallon.

Viz. $12: 14 \frac{1}{2} \frac{2}{3}:: 224: 272 \frac{1}{2}$, which is very near to $272 \frac{1}{4}$, the common received Content of a Corn Gallon: Althe' now it is otherwife fettled by an Act of Parliament made in April 1697, the Words of that Act are thefe:

Every round Bufhel with a plain and even Bottom, being made eighteen Inches and a balf wide throughout, and eight Inches deep, fould be efteemed a Legal Winchefter Bufhel, according to the Standard in bis Majefty's Exchequer.

Now a Veffel being thus made will contain 2150,42 Cubick Inches, confequently the Corn Gallon doth contain but $268 \frac{4}{5}$ Cubick Inches.
$\left\{\begin{array}{l}\text { Cub. Inchess } \\ 268,8=1 \text { Gallon. } \\ 537,6=2=1 \text { Peck. } \\ 2150,4=8=4=1 \text { Bufbel. } \\ 17203,2=64=32=8=1 \text { Quarter. }\end{array} \quad\right.$ Note, $\quad\left\{\begin{array}{l}4 \text { Bu/bels }=\text { a Comb. } \\ 10 \text { 2uarters }=\text { a Wey, and } \\ 12 \text { Weys }=\text { Laft of Corn. }\end{array}\right.$

I obferved amongft the Lead-Mines in Derbybirc, (Anno 1692) that the Miners bought and fold their Lead Ore, by a Meafurs which they call'd an Ore Difh; whofe Dimenfions I carefully took, and found it

$$
\text { Thus }\left\{\begin{array}{cc}
\text { I.ength } & 21.3 . \\
\text { Breadth } & 6 . \\
\text { Depth } & 8.4 .
\end{array}\right\} \text { nnches. }
$$

Chap. 3. Of đCTeigbtg, Mrafuteg, \&cc.
Confequently is Content is 1073,52 Cubick Inches, which is very near equal to 4 Corn Gallons, according to the above-mentioned Settlement.

Nine of thofe Difhes they call a Load of Ore, which if it be pretty good, will produce about 3 hundred Weight of Lead.

> 8. Of Time.

It is not an eafy Thing to give a true Defnition of Time; for (according to the Pbilofophick Poet)

> Time of itfelf is nothing, but from Thought Receives its Rife, by labouring Fancy wrought From Things confider'd, whilft we think on fome As prefent, fome as paft, or yet to come. No Thought can think on Time, that's fill confeft, But thinks on Things in Motion or at Ref.

> And fo on, Vide Lucretius, Book I.

That is, Time only Mhews the Duration or Mutation of Things, a Year being the Standard or Integer, by which fuch Continuance or Change is computed. And a Year is that Space of Time in which the Sun (apparently) compleats its Revolution from any one Point in the Ecliptick (an imaginary Circle in the Heavens) to the fame Point again, which, according to modern Obfervations, is performed in 365 Days, 5 Hours, 48 Minutes, 57 Seconds, 21 Thirds, \&cc. But a Second being the leaft part of Time that can be truly meafured by the Motion of any Mechanical Engine, as a Clock, \&rc. (a Third being lefs than the Twinkling of an Eye) I begin the following Table with Seconds.


But the common Year, ufually called the Fulian Year, doth confift of 365 Days and 6 Hours, and is divided into twelve unequal Months, called Calendar Months, whofe Names and Number of Days are the Subject of every Almanack.

To there Tables it may not be amis to give a brief Account of fuch Coins, Weights, and Meafures, as are frequently mentioned in the Scriptures, Ass I have deduced them from thole which feem to be the mot Correct, inferted in the Index to the large Bible, Printed Anne 1702, and compared with thole ufed in England, by the Lord Bishop of Peterborough [Cumberland].

The Hebrew Weights, compared with $\left\{\begin{array}{c}T_{\text {roy }} \text { Weight. } \\ O\end{array}\right.$ Oz. Pw. Gr.

$$
\begin{aligned}
& A \text { Gera }=0 \cdot 0 \cdot{ }^{10_{2}^{\frac{1}{2}}} \\
& \text { rom Gerabs=a Bekab= 0. 4. } 13^{\frac{1}{2}} \\
& 2 \text { Bekabs二a Shekel= } 0 \cdot 9 \cdot 3 \\
& 100 \text { Sbekels=a Menam }=45 \cdot 12 \cdot 12
\end{aligned}
$$

Note, A Shekel is aid to be their OrigInal Weight.
Their Coin
English Coin.
s.
d.
A Silver Menam $=$ 7. 1. 54 Weight 60 Shekels. Talent of Silver $=357 \cdot 11 \cdot 10 \frac{1}{2}$ Weight is 300 Shekels. Talent of Gold $=5075 \cdot 15$. $\quad 7 \frac{1}{2}$ The fameWeight menThe Gold Dram= I . o . 4 toned Ez. ii. 19.

The Roman Money mentioned in the New Tefament.

> A Denarius, or Silver Penny $=7$ d. 3 Farthings.
> Ages of Copper $=0.3$ Farthings. AJarium $=0$. $1^{\frac{1}{2}}$ Farthing. Quadrans $=0$. $\frac{3}{4}$ of a Farthing. A Mite =0. $\frac{1}{3}$ of a Farthing.

Their Long Meafure, compared with $\left\{\begin{array}{l}\text { Englijp Meafure. } \\ \text { Tar }\end{array}\right.$ A Finger's Breadth $=0.0 .0,912$
4 Fingers $=a$ Hand's Breadth $=0.0 .: 3,648$
2. Hands =the leaf Span=

3 Hand's Breadth =the longeft Span=
2 Spans=the longeft Cubit= 4 Cubits $=a$ Fathom $=$
6 Cubits=Ezekiel's Reed= 400 Cubits =a Stadium= 10 Stadiums =a Mile= 3 Miles =a Parasang = Which is 4 Englifh Miles and
$0 \cdot 0 \cdot 7,296$
$0 \cdot 0 \cdot 10,944$
$0 \cdot 1 \cdot 9,888$
$2 \cdot 1 \cdot 3,552$
$3 \cdot 1 \cdot 11,328$
$243 \cdot 0 \cdot 7,2$
$2432 \cdot 0 \cdot 0$
$7296 \cdot 0 \cdot 0$
$256 \cdot$

Their

Chap. 3. Of đuleigbty, פ९eafutey, \&c.
Their Meafures of Capacity, compared with $\{$ Englifh Wine.

$$
\begin{aligned}
& A \text { Cotyla }=10.0 \frac{\frac{\pi}{2}}{2} \quad 3,037 \\
& A \log =\begin{array}{ll}
0.0 \frac{2}{2} & 9,83 \\
0.0 & 1
\end{array} \\
& 4 \log =a \operatorname{Cab}=0 \cdot 3 \cdot 10,458 \\
& 10 \text { Catyla's }=\text { an } O \text { mer }=0.6 .1,5 \\
& { }_{3} \mathrm{Cabs}=a H_{\text {R }}=1.2 \cdot 2,5 \\
& 2 \text { Hins }=a \text { Seab }=2 \cdot 4 \text {. 5, } \\
& 3 \text { Seabs =an Epha }=7 \cdot 4 \cdot 15 \text {, } \\
& \text { 10 Epha's }=a \text { Chomer }=175 \cdot 5 \cdot 5,625
\end{aligned}
$$

## Sect. 2. ADDition of Weights, \&xc.

The foregoing Tables being fo well underftood, as that you can readily tell (without paufing) how many Units of any one Denomination, do make one of the next Superior Denomination (efpecially in thofe Tables which are mof ufeful for your Bufinefs) it will then be as eafy to add or fubftract them, as to add or fubfiract whole Numbers, due Care being taken in placing all Numbers that are of one Denomination exactly underneath each other. That is to fay, in Money, place Pounds under Pounds, Sbillings under Sbillings, Pence under Pence, \&x. Underftand the like in Weights and Meafures, \&cc. according to their feveral Dengminations: Then in Addition obferve this Rüle.

> R U L E.

Always begin with thofe Figures of the loweft or leaft Denomination, and add them all together into one Sum, then confider bow many of the next Superior Denomination are contained in that Sum, fo many Units you muft carry to the faid nexst Superior Denonomination to be added together with thofe Figures that fland there; and if any thing remain over or above thofe Units focarried, that Overplus muft be fet down underneath its own Denomination: And fo proceed on from one Denomination to another until all be finifbed.

## Example in Coin.

Let it be required to add 35 l .14 s .06 d . and 27 l .02 s . ro d. and 54 l .13 s .04 d . and 10 l .17 s . o9 d. into one Sum.

The particular Sums being placed, as before directed, will ftand as in the Margin following.

Then according to the Rule, I begin with the Pence (being here the loweft or leaft Denomination, and adding them all together, I find their $S u m$ to be 29 d . that is 2 s . and 5 d . (for
$24=2 \mathrm{~s}$. and $29-24=5$ ) the 5 d . I fet down $l_{\text {. s. } d_{0} \text {. }}$ underneath its own Denomination, and carry the 35 . 14.06 2 s. to the Place of Shillings, adding them and 27.02 . 10 all the Shillings together, I find the Sum to be $54 \cdot 13 \cdot 04$ 48 s . viz. 2 l .8 s . I fet down the 8 s . under- 10.17 .09 neath its own place of Shillings, and carry the 21. to the Place of Pounds, adding them and all 128.08.05 the Pounds together, I find their Sum is 128 l.
confequently the Total Sum required is $128 \% .08 \mathrm{~s} .05 \mathrm{~d}$.
Now, for as much as it often happens in keeping Books of Accounts, (and in other Bufinefs) that it is required to add up large Sums of Money, confifting of 30,40 , or more feveral particular Sums, nay, perhaps, filling up the whole length of a Sheet of Paper, I humbly conceive in thofe Cafes the beft and eafieft way will be to part them into Parcels, not exceeding above 10 or 12 particular Sums in each Parcel; that done, add together all the Sums of thore Parcels into one Sum, and that will be the Total Sum required.

Alfo to avoid the making of Points, or other Marks amongft your Figures, it will be convenient to get the following Tables by heart,


The Ufe of there Tables is fo obvious, that I prefume it is needlefs to explain them.

Examples in Addition of Weights.


Examples
Chap. 3. Subittaction of Taleighty, \&c. 41

## Examples in Addition of Long-Meafure.

| rards | 2ir. | Nails | Miles | Fur. | Poles | Yar | Fet | nch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | 2 |  | 2. | 6 | 32 | - 4 | 2 | - 9 |
| 17 | 3 | I | $\bigcirc$ | \% | 27 | 3 | - 1 | - 10 |
| 129 | - 1 | 2 | 1. | 3 | 39 | 2 | 2 |  |
|  |  |  |  |  |  |  |  |  |

I think it needlefs to fet down more Examples of this kind, for if thefe 5 (efpecially the laft) be well underftood, they will be fufficient to thew how any other may be performed.

## Sect. 3. Subfitaction of Weights, \&c.

$S^{U b f f r a c t i o n}$ is but the Converfe of the precedent Work, and may be performed by obferving this Rule.

> R U L E.

Begin with the Loweft or Leaft Denomination (as before in Addition) and Take or Subftract the Figure (or Figures) in that place of the Subtrahend, from the Figure (or Figures) that fand over them of the fame Denomination; fetting down the Remainder. (as in Page 12.) But if that cannat be done, then you muft increafe the upper Figure (or Figures) with one of the next Superior Denomination, and from that Sum make Subfraction; and fo proceed to the next Superior Denomination, where you muft pay the one borrowed, by adding Unity to the Subtrahend in that place, \&cc. as in whole Numbers.

Examples in Coin.


The Firft of thefe Examples is felf evident. In the Second Example, beginning at the place of Pence (being here the Leaft Denomination) I am to take $8 d$. from $6 d$. but becaufe that cannot be done, I muft (according to the Rule) borrow one of the next Denomination, viz. Is. and add it to the 6 d . which makes it $18 d$. (for $1 s .=12 d$. and $12 d .+6 d=18 d$. then I take 8 d . from that i 8 d . and there remains ro d . to be fet down underneath the place of Pence; that done, I proceed to the place of Sbillings, where I muft now pay the Is. faying one borrowed and 15 makes 16 from 10 cannot be, but

16 from 3 and there remains is. That is, I borrow one of the next Denomination, viz. 1 1 . and add to it the 10 s . which makes it 30 s. for $1 l=20$ s. and $20 \mathrm{~s}+\mathrm{rc}=30$ ) having ret down the Remaining I4 s. underneath its own place of Shillings, I proseed to the place of Pounds, where paying the il. borrowed, it will be 1 borrowed and 9 is 10 from 9 cannot be, but 10 from 19 and there Remains 9, and fo on as in whole Numbers until all be finished; and the Remainder will be 179 l. $14 \mathrm{s} 10 d.$.

This Example being a little confidered will render all others in this Rule early.

Examples in Wights.


Examples in Long Meafure.
yds. prs. nails miles fur. pol. yd. feet inches
From $78 \cdot 3 \cdot 2$
Take $29 \cdot 3 \cdot 3$
Reft $48 \cdot 3 \cdot 3$

$$
\begin{aligned}
& 22 \cdot 3 \cdot 26 \cdot 3^{\frac{1}{2}} \cdot 0: 9 \\
& 18 \cdot 6 \cdot 29 \cdot 4 \cdot 2: 11 \\
& 3 \cdot 4 \cdot 3^{6} \cdot 4 \cdot 0 \cdot 10
\end{aligned}
$$

Example in Time.

$$
\begin{aligned}
& \text { From } \begin{array}{rll}
\text { days } & 0 & 1 \\
27 & 18: 35
\end{array}{ }^{11} \\
& \text { Subtract } 16 \cdot 21 \cdot 4^{6} \cdot 3^{6} \\
& \text { Remains 10.20.48 . } 45
\end{aligned}
$$

The Proof of Addition and Subjtratzion in there Numbers of different Denominations, is the very fame with that of whole Numbers in Page 13. I hall therefore refer you to that place, and omit repeating it here.

## Sect. 4. Of 促配ction.

BY Reduction, Numbers of different Denominations acre brought into one Denomination.
That is, it alters or changes any Superior Denomination propoled, into any Inferior or Leffer Denomination Required; fill
ftill keeping them equivalent in value. And by that means they become fitly prepared for Multiplication and Divifon; which otherwife could not fo conveniently be perfarmed. Therefore the Bufinefs of Reduction is very ufefal in the Rule of Proportion, (commonly called the Golden Rule, or Rule of Three) efpecially tothofe who do not underfand either Vulgar or Decimal FraEtions. And it is thus performed:

$$
R \cup L E .
$$

Confsder bow many Units of the Denomination Required, make one of that Denomination propofed to be Reduced (which is eafily known by its refpective Table) and with that Number of Units, Multiply the Denomination propojed, and their Product will be the Number Required.

Example in Coin.
Let it be Required to Reduce or Charge 357 l. into Shillings, and thofe Sbillings into Pence, which fhall ftill be equal in value with the $35 \%$.
Multiply with $\begin{array}{r}357 \\ 20\end{array}$ the Shillings in one Pound.
$7140=$ the Sbillings in $357 \%$
Multiply with $\quad 12$ the Pence in one Shilling.
142 8
$\frac{714}{85680}=$ the Pence in 357 l. as was Required.
Or 357 \%. may be reduced into Pence, at one Operation; Thus,


But when the Numbers propofed to be Reduced are of feveral Denominations, and it is required to bring them all to the Loweft; you muft Reduce the higheft or greateft Denomination to the next lefs, Adding the Numbers that are of that lefs Denomination together, then Reduce their Sum to the next lower Denomination, Adding together all the Numbers that are of that Denomination, and fo proceed gradually on 'till all is done.

G 2
EXAMPLE.

## E $X A M P L E$.

Let it be required to Reduce 375 l. 17 s. 10 d. 3 q, into one Denomination, viz. into Farthings.

$$
375 \text { l. } 17 \mathrm{~s} .10 \mathrm{~d} .3 \mathrm{q} .
$$ 20

$7500=$ the Sbillings in $375 \%$

| $+\quad 175$ |
| :--- |

$7517=$ the Shillings in 375 l. 17 s. 12

15034
7517
$90204=$ the Pence in 375 \%. 17 s. $+\quad 10 d$.
$90214=$ the Pence in 375 l. 17s. 10 d .
4
$360850=$ the Farthings in 375 l. I7 s. 10d.
$+\frac{3}{+\quad} \frac{1}{360859}$ Farth. $=375$ 1. 17 s. 10d. 3 g. as was required.
The Work of this Example, and all other Operations of this kind, may be fomewhat fhortened by obferving the following Method.

$$
375 \text { l. } 17 \text { s. } 10 \mathrm{~d} .3 \mathrm{~g}
$$

20 Multiply and Add in the 17 s.
7517
12 Multiply and Add in the 10 d .
15034
7517
90214
4 Multiply and Add in the 3 qrs. 360859 the Fartbings as before.

Example in Troy Weight.
Suppofe it be Required to Reduce 29 lb .8 oz .18 pwt. 21 gr . into the Leaft Denomination, viz. into Grains.

Thus 29 lb .8 oz. 18 pwi. 21 gr.
Multiply with 12 the oz. in 1 lb . and add in the 8 oz .

$\begin{array}{r}29 \\ \hline\end{array}$
$356=$ the oz. in $29 \mathrm{lb}: 8 \mathrm{oz}$.
Multiply with 20 the pwts in 1 oz . and add in the 18 pwt . $713^{8}=$ the prots in 29 lb .8 oz .18 pwt .
Multiply with 24 the grs in 1 pwt, and add in the 21 grs.

$$
28553
$$

14278
171333 the $\mathrm{grs}=29 \mathrm{lb} .8 \mathrm{oz} .18 \mathrm{pwts} .21 \mathrm{grs}$.
Thefe two Examples at large being well underftood, may fuffice to flhew how all Operations of this kind are performed; either in Weights, Meafures, or Time. I fhall only infert a few Examples of each fort for the Learner's Practice.

1. In ${ }_{23} C .3$ qrs. 21 lb .9 oz . Averdupois Weight ; How many Ounces? Anfw. 42905 Ounces.
2. In 252 Eng. Miles, How many Yards, Feet, and Inches? Anfw. 443520 yds . $=1330560$ Feet $=15966720$ Inches.
3. In 1692 common Years, How many Days, Hours, and Minutes? Anfw. 618003 Days, 14832072 Hours, 889924320 Minutes.

Note, a common Year $=365$ Days, 6 Hours, fee Page 37.
4. In 5786 Pounds, 17 Shillings, 9 Penie, Sterling; How many Shillings, Pence, and Farthings? Anfw. 115737 s. 1388853 d. or 5555412 Farthings. That is, $5786 /$. 1 7 s. $9 \mathrm{~d} .=115737$ s. $9 \mathrm{~d} .=1388853 \mathrm{~d} .8 \mathrm{cc}$.

The next Thing will be to fhew how to bring Numbers from a leffer to a greater Denomination, which by moft Authors is called (tho' very improperly)

## 12eduction afcending.

This Work is the Converfe of the laft, and is performed by Divifion. Thus,
R.U L E.

Confider how many of the Denomination propofed make one of the Denomination required, and make that Number your Divifor, by which divide the Denomination propofed; and the Quotient will bp The Number tequired.

$E X A M P L E$.

## E $X A M P L E$.

Let it be required to find how many Shillings and Pounds are contained in 85680 Pence.

The $P_{\text {ence in 1s: are 12) }} 85680(7140 \mathrm{~s}=85680 \mathrm{~d}$.
Again the Shillings in 1l. are 20) 7140 (357 l. the Anfwer required.

Another Example in Coin.
How many Pence, Sbillings, and Pounds, are contained is 264859 Farthings.

$$
\text { 12) } 20 \text { ) }
$$



Remains (3) q. $\{$ Note, the Remainder is always of the fame Denomination with the Dividend.
The laft Quolient 275l. together with the feveral Remainders, give the Anfwer required.

Viz. 275 l. 17 s. 10 d. $3 q=264859$ Fartbings.

## Example in Troy Weight.

Suppofe it were required to find how many Pwts. Ozs. and lbs. are contained in 171333 Grains.

$$
\begin{aligned}
& \text { 20) 12) } \\
& \text { 24) } 171333 \mathrm{gr} \cdot \underline{(7138 \mathrm{pw} .} \text { (356 (29 lb. } \\
& \begin{array}{lll}
\begin{array}{l}
168 \ldots \\
33 \\
24
\end{array} & \frac{113}{13^{8}} & \frac{24}{116} \\
\hline(18) \text { pws. } & --
\end{array} \\
& 93 \\
& \text { (8) oz. } \\
& 72 \\
& 213 \\
& \text { Remains } \frac{192}{(21) g r} \text {. }
\end{aligned}
$$

Anfw. 29 lb .8 oz .18 pwt. 21 grs . This and the laft Example are the Reverfe or Proof of thofe in Pages 43, 45.
I. In 42905 Ounces, Averdupois weight; How many. Pounds, Thus,

2. In 15966720 Inches; How many Englifb Miles, \&c.

Anfiw. 252 Miles, \&c. as occafion requires.
There are many ufeful Queftions may be anfwered by the help of Reduction only: As the changing of one fort of Coin for another; and comparing one fort of Meafure with another, E®c.

For Inftance: Suppofe one had 347 Rixdollars, at 4 s. 6 d. per Dollar; and defired to know how many Pounds Sterling they make,

$$
347
$$

$54=$ the Pence in one Dollar, viz. 4 s. $6 d .=54 d$.
1388
$1735 \quad 20)$
12) $1873^{8 d} . \quad(1561$ s. $(78 l$.
67
$\frac{\frac{67}{\frac{73}{18}}}{\frac{161}{(1) s}} \quad \frac{1}{}$

Anfw. 78 l. is. 6 d. Sterl. are $=347$ Rixdollars .
2uef.2. In 645 Flemifh Ells; How many Ells Englifh?
Note, 3 2uarters of a Yard Englifh make one Ell Flemijh, and I $\frac{1}{4}$, or 5 Quarters of a Yard, is an Englifh Ell.

Therefore, 645
$3=$ the qrs of a Yard in I Ell Flemijh.
qrs in 1 Ell $=5$ ) $1935(387$ Englibh Ells for the Anfwer.
2ueft. 3. Suppofe a Bill of Exchange were accepted at London, for the Payment of 400 l . Sterl. for the Value delivered at Amferdam in Flemifh Money at I l. 13 s. 6d. for I Pound Sterl. How much Flemifh Money was delivered at Amferdam?

Firft, $1 \mathrm{l} .13 \mathrm{~s} .6 \mathrm{~d} .=402 \mathrm{~d}$. the Value of one Pound Sterl. at Amferdam.

Then, $402 \mathrm{~d} . \times 400=160800 \mathrm{~d} .=670 \mathrm{l}$. Flemi/h, and $\mathrm{f}_{0}$ nuch was delivered at Amflerdam.

CHAP.

## CHAP. IV.

## Of Alulgar stactions.

## Sect. i. Of Rotation.

AFraction, or Broken Number, is that which reprefents a Part or Parts of any thing propofed, (vide Page 3 .) anc is expreffed by two Numbers placed one above the other wirf? a Line drawn betwixt them :

$$
\text { Thus, }\left\{\frac{3}{4} \text { Numerator }\right. \text { Denominator. }
$$

The Denominator, or Number placed underneath the Line, denotes how many equal Parts the thing is fuppofed to be divided into (being only the Divifor in Divifion). And the Numerator, or Number placed above the Line, fhews how mary of thofe Parts are contained in the Fraction (it being the Remainder after Divifion). (Fee Page 29.) And thefe admit of three Diftinctions:

$$
\text { Viz. }\left\{\begin{array}{l}
\text { Proper or Simple } \\
\text { Improper } \\
\text { Compound }
\end{array}\right\} \text { Fractions. }
$$

A proper, pure, or Simple Fraction, is that which is lefs than an Unit. That is, it reprefents the immediate Part or Parts of any thing lefs than the whole, and therefore it's Numerator is always lefs than the Denominator.

As $\left\{\begin{array}{l}\frac{1}{4} \text { is one Fourth Part. } \\ \frac{1}{3} \text { is one Third Part. }\end{array}\right.$ And $\left\{\begin{array}{l}\frac{1}{2} \text { is one Half. } \\ \frac{2}{3} \text { is two Thirds, \&e. }\end{array}\right.$
An Improper Fraction is that which is greater than an Unit. That is, it reprefents fome Number of Parts greater than the whole thing; and it's Numerator is always greater than the Denominator.

$$
\text { As } \frac{5}{3} \text { or } \frac{3}{7} \text { or } \frac{41}{15} \& c \text {. }
$$

A Compound Fraction is a Part of a Part, confifting of feveral Numerators and Denominators connected together with the Word [of].

As $\frac{1}{3}$ of $\frac{3}{4}$ of $\frac{2}{1}, E^{\circ} \mathrm{c}$. and are thus read, The one Tbird of the three Fourths of the two Fifths of an Unit.

That is, when a Unit (or whole thing) is firt divided into any Number of equal Parts, and each of thofe Parts are fubdivided
fubdivided into other Parts, and fo on: Then thofe laft Parts are called Compound Fractions, or Fractions of Fractions.

As for inftance, fuppofe a Pound Sterling (or 20 s.) be the Unit or Whole; then is 8 s . the $\frac{2}{5}$ of it, and 6 s . the $\frac{3}{4}$ of thofe two Fifths, and 2 s . is the $\frac{1}{3}$ of thofe three Fourths; viz. $2 \mathrm{~s} .=\frac{1}{3}$ of $\frac{3}{4}$ of $\frac{2}{5}$ of one Pound Sterling.

All Compound Fractions are reduced into fingle ones, Thus,

> R U L E.

Multiply all the Numerators into one another for a Numerator, and all the Denominators into one another for the Denominator.

Thus the $\frac{1}{3}$ of $\frac{3}{4}$ of $\frac{2}{3}$ will become $\frac{6}{6}$. $\mathrm{Or} \frac{7}{10}$.
For $1 \times 3 \times 2=6$ the Numerator, and $3 \times 4 \times 5=60$ the Denominator, but $\frac{6}{60}$ or $\frac{1}{10}$ of a $l$. Sterl. is 2 s . As above.

Sect. 2. To Altet or Cbange different Flactiang into one Denomination retaining the fame Value.

IN order to gain a clear Underftanding of this Section, it will be convenient to premife this Propofition, viz. If a Number multiplying two Numbers produce other Numbers, the Numbers produced of them fhall be in the fame proportion that the Numbers multiplied are, 17 Euclid 7 .

That is to fay, If both the Numerator and Denominator of any Fraction be equally multiplied into any Number, their Products will retain the fame Value with that Fraction.

As in thefe, $\frac{2 \times 2}{3 \times 2}=\frac{4}{6}$. Or $\frac{2 \times 3}{3 \times 3}=\frac{6}{9}$. Or $\frac{2 \times 5}{3 \times 5}=\frac{10}{15}$, Eoc
That is, $\frac{2}{3}$ and $\frac{4}{6}$. Or $\frac{2}{3}$ and $\frac{6}{9}$. Or $\frac{2}{3}$ and $\frac{10}{1} \frac{0}{5}$ are of the fame Value, in refpect to the Whole or Unit.

From hence it will be eafy to conceive, how two or more Fractions that are of different Denominations, may be altered or changed into others that fhall have one common Denominator, and ftill retain the fame Value.

Example. Let it be required to change $\frac{2}{3}$ and $\frac{3}{2}$ into two other Fractions that fhall have one common Denominator, and yet retain the fame Value.

According to the foregoing Propofition, if $\frac{2}{3}$ be equally multiplied with 7 , it will become $\frac{14}{21}$, viz. $\frac{2 \times 7}{3 \times 7}=\frac{14}{21}$. Again, if $\frac{2}{7}$ be equally multiplied with 3 , it will become $\frac{\pi}{25}$, viz. $\frac{3 \times 3}{7 \times 3}={ }_{21}$.

And by this means I have obtained two new Fractions, $\frac{14}{2} \frac{4}{1}$ and $\frac{0}{2 i}$, that are of one Denomination, and of the fame Value with the two firft propofed, viz. $\frac{\frac{1}{2} \frac{4}{3}}{\frac{1}{2}}=\frac{2}{3}$ and $\frac{3}{2} \frac{1}{2}=\frac{2}{7}$.

And from hence doth arife the general Rule for bringing all Fractions into one Denomiaation.

## R U L E。

Multiply all the Denominators into each other for a new (and common) Denominator. And each Numerator into all the Denominators but it's own, for new Numerators.

Example. Let the propofed Fractions be $\frac{7}{3}, \frac{2}{5}, \frac{3}{4}$, and $\frac{6}{7}$. Then, by the Rule,
A new Denominator will be thus found.

| 3 | 1 | 2 | 3. | 6 |
| :--- | :--- | :--- | :--- | :--- |
| $\frac{5}{15}$ | $\frac{5}{5}$ | $\frac{3}{6}$ | $-\frac{3}{9}$ | $\frac{3}{18}$ |
| $\frac{4}{60}$ | $\frac{4}{20}$ | $\frac{4}{24}$ | $\frac{5}{45}$ | $\frac{5}{90}$ |
| $\frac{7}{420}$ | $\frac{7}{140}$ | $\frac{7}{108}$ | $\frac{7}{315}$ | $\frac{4}{300}$ |

Hence 420 is the common Denominator; and 140.168 .315. 360, are the new Numerators, which being placed Fraction-wife are $\frac{140}{420} \cdot \frac{168}{420} \cdot \frac{315}{420} \div \frac{300}{420}$, the New Fractions required.
That is, $\frac{140}{420}=\frac{1}{3} \quad \frac{168}{420}=\frac{2}{5} \quad \frac{315}{420}=\frac{3}{4}$ and $\frac{360}{420}=\frac{6}{7}$

Sect. 3. To bring mix'd mumbet into \#ractianm, and the contrary.
M IX'D Numbers are brought into improper Fractions by the following Rule.

## R U L E.

Multiply the Integers, or whole Numbers, with the Denominator of the given Fraelion, and to their Product add the Numerator, the Sum will be the Numerator of the Fraction required.

Example. $9 \frac{4}{5}$ by the Rule will become $\frac{49}{5}$. For $9 \times 5=\frac{48}{5}$. And, $\frac{45}{5}+\frac{4}{5}=\frac{49}{5}$, the improper Fraction required.
Again, $13 \frac{11}{15}$ will become $\frac{206}{15}$. For $13 \times 15=\frac{195}{12}$.
And $\frac{192}{15}+\frac{1}{2} \frac{1}{5}=\frac{206}{15}$. And fo for any other as occafion requires.
To find the true Value of any improper Fraction given is only the Converfe of this Rule. For if $\frac{4,2}{2}=9 \frac{4}{3}$, as before is evident:

Then it follows that if 49 be divided by 5 , the Quotient will give $9 \frac{4}{5}$. And if 205 be divided by 15, it will give $13^{\frac{1}{2} \frac{1}{5},} \xi^{\circ} c$. confequently it follows, that

If the Numerator of any improper Fraction be divided by it's. Denominator, the Quotient will difcover the true Value of that Fraction.

$$
E X A M P L E\{.
$$

$\frac{35}{7}=5$. And $\frac{41}{3}=4 \frac{5}{9}, \quad$ And $\frac{121}{20}=6 \frac{1}{2 \pi} . \quad$ Or $\frac{15}{4}=3 \frac{3}{4}, \xi^{\circ} \mathrm{c}$.
When whole Numbers are to be expreffed Fraction-wife, it is but giving them an Unit for a Denominator. Thus 45 is $\frac{4 .}{1}$. 9 is $\frac{9}{1}$, and 25 is $\frac{25}{1}, \delta^{\circ}$.

Sect. 4. To Ghbersiate or Rentuce Fractonty into tbeir Lozveft or Leaf Denomination.

THIS is done, not out of any neceffity, but for the more convenient managing of fuch Fractions as are either propofed in large terms; or fwell into fuch, either by Addition or otherwife : befides it is moft like an Artift to exprefs or fet down all Fractions in the loweft terms poffible; and to perform that, it will be neceflary to confider thefe following Propofitions.

## Numbers are either $\{\mathfrak{P i m e}$ or $\mathbb{C}$ mupered.

1. A Prime Number is that which can only be meafured by an Unir, Euclid 7. Defin. 11 .

That is, $3,5,7,11,13,17,8^{\circ} \mathrm{c}$. are faid to be Prime Numbers, becaufe it is not poffible to divide them into equal Parts by any other Number but Unity or I.
2. Numbers Prime the one to the other, are fuch as only an Unit doth Meafure, being their common Meafure. Euclid 7. Defin. 12.

For inftance, 7 and 13 are Prime Numbers to each other, becaufe they cannot be divided by any Number but an Unit. And 9 and 14 are alfo Prime Numbers to each other, for altho' 3 will meafure or divide 9 without leaving a Remainder; yet 3 will not meafure 14 without leaving a Remainder: Again, altho 2 will meafure 14 without any Remainder, yet 2 will not meafure 9 without leaving a Remainder, $E^{\circ} c$.
3. A compofed Number is that which fome certain Number meafureth. Euclid 7. Defin. 13.

For inftance, 15 is a compofed Number of 3 and 5 , for $5 \times 3$ $=15$, confequently 3 or 5 will juftly meafure 15. Alfo 20
is compofed of 5 and 4 , viz. $5 \times 4=20$, therefore 5 and 4 will each juftly meafure 20.
4. Numbers compofed the one to the other, are they which fome Number, being a common Meafure to them both, doth meafure. Euclid 7. Defin. 14.

That is, if two or more Numbers can be divided by one and the fame Divifor; then are thofe Numbers faid to be compofed one to another,

For Inflance, 14 and 21 are Numbers compofed the one to the other, becaufe they can both be meafured or divided by 7 . For $7 \times 2=14$, and $7 \times 3=21$; therefore 7 is a common Meafure to 14 and 2 I . So that if $\frac{14}{21}$ were propofed to be abbrevi* ated, it will become $\frac{2}{3}$.

$$
\text { Thus }\left\{\begin{array}{l}
7) \frac{14}{21}=\frac{2}{2} \\
7,
\end{array}\right.
$$

And how thofe greateft common Meafures may be found comes from Euclid 7. Prob. 1, 2, 3, and is thus:

## R U L E.

Divide the greater Number by the leffer, and that Divifor by the Remainder (if there be any), and $\int 0$ on continually until there be no Reinainder left: Then will that laft Divijor be the greatefl common Meafure (and if it happen to be $\mathbf{1}$, then are thofe Numbers Prime Numbers, and are already in their loweft Terms; but if otherwife) Divide the Numbers by that laft Divifor, and their 2 uotients will be their leaft Terms required.

$$
E X A M P L E
$$

Let it be required to find the greateft common Meafure of 72 and 108 , viz. of $\frac{72}{108}$.
72) $108(1$
$\frac{72}{\left.3^{6}\right) 7^{2}}(2$
\{ Here becaufe there is no Remainder: $\frac{7^{2}}{(0)}$ $3^{6}$ is the greateft common Meafure.

Therefore, $\left\{\begin{array}{l}\left.3^{6}\right) \frac{72}{}=\frac{2}{3} \\ \left.3^{6}\right) \frac{108}{108}=\frac{\text { Hence }}{} \frac{72}{108} \text { is abbreviate } \\ \text { to } \frac{2}{3} \text { the loweft Terms. }\end{array}\right.$
Again, to find the greateft common Meafure of 744 and 899.

Chap. 4.

$$
\begin{aligned}
& \text { Thus, 744) } 899 \text { (1 } \\
& \frac{744}{155)} 744(4 \\
& \frac{620}{124) 155(1} \\
& \frac{124}{31) 124(4} \\
& \begin{array}{l}
124 \\
\hline(0)
\end{array}
\end{aligned}
$$

Here 31 is found to be the greateft common Meafure by which 744 and 899 may be abbreviated to 24 and 29 their loweft Terms. Thus, $\left.\frac{3}{3} \frac{1}{7}\right) \frac{744}{89}\left(=\frac{2}{2} \frac{4}{9}, \varepsilon^{\circ} \mathrm{c}\right.$.
Note, If the propofed Numbers be even, they may be brought lower by a continued halfing of them, fo long as they can be halfed, viz. divided by 2 .

$$
E X A M P L E .
$$

It is required to Reduce $\frac{56}{8}$ to it's leaft Terms.

$$
\text { Firft, } \left.\frac{2}{2}\right) \frac{56}{8} \frac{6}{4}\left(=\frac{28}{42} . \quad \text { Again, } \frac{2}{2}\right) \frac{28}{42}\left(=\frac{14}{2} \frac{4}{1} .\right.
$$

This done, you eafily perceive that 7 will be the common Meafure to 14 and 21 , viz. $\frac{7}{7}$ ) $\frac{14}{2}\left(=\frac{2}{3}\right.$, Evc. $^{\text {. }}$

If the Numbers propofed to be reduced have each a Cypher, or Cyphers annexed to them, they will be abbreviated by cutting off a like Number of Cyphers from both.

Thus, $\frac{1}{3} 5 \circ \%$ will be $\frac{15}{3} 5$. And $\frac{200}{30} 0$ will be $\frac{2}{3}, \xi^{\circ} c$.


## Sect 5. adoition of fractiong.

WHAT hath been done by the Rules in this Chapter, is chiefly to prepare and fit Fractions of different Denominations for Addition or Subtraction, as Occafion requires, viz. If they are Compound FraEtions, they muft be reduced to Simple or Pure Fractions, per Rule, Sect. I.

If they are of different Denominations, they muft be altered or clianged, per Rule, Sect. 2.

That is, all Fractions muft be brought into one Denomination before they can either be added or fubtracted; and that being done, Addition is thus performed.

> R ULE.

Add together all the Numerators, and their Sum will be a New Numerator, under which fubfcribe the Common Denominator.

## Examples in ©simple fractions.

Let it be propofed to add $\frac{1}{3}, \frac{2}{5}$, and $\frac{3}{4}$ together. Firf, $\frac{1}{3}=\frac{20}{60}$, $\frac{1}{5}=\frac{24}{6}$, and $\frac{3}{4}=\frac{45}{6}$, per Sect. 2.

Then $\frac{20}{60}+\frac{24}{6} \frac{4}{0}+\frac{45}{60}=\frac{8}{6} 9$, the Sum required, which according to Sestion 3, is $1 \frac{2}{6} \frac{1}{3}$, viz. $\frac{89}{6}=1 \frac{2}{6} \frac{2}{6}$.

## Examples is Companno jlactiant.

Let it be required to add $\frac{3}{7}$ and $\frac{2}{3}$ of $\frac{3}{4}$ into one Sum. Firt $\frac{2}{3}$ of $\frac{3}{4}$ becomes $\frac{6}{12}$ or $\frac{1}{2}$ per Sect. 1. And (per Sect. 2.) $\frac{3}{7}$ and $\frac{1}{2}$ is $\frac{6}{\frac{6}{7} \frac{1}{3}}$ and $\frac{7}{1} \frac{7}{4}$, viz. $\frac{3}{7}=\frac{6}{14}$, and $\frac{1}{2}=\frac{7}{14} ;$ but $\frac{7}{14}+\frac{6}{14}=\frac{13}{1} \frac{3}{4}$ the Sum required, viz. $\frac{7}{7}+\frac{2}{3}$ of $\frac{3}{4}=\frac{1}{1} \frac{3}{4}$.

## Examples in nite 解umberg.

It is required to add $5 \frac{2}{5}$ to $7 \frac{3}{4}$, thefe per Sect. 3 . will be $\frac{17}{3}$ and $\frac{3!}{4}$. But $\frac{17}{3}$ and $\frac{31}{4}$ will become $\frac{68}{12}$ and $\frac{93}{12}$ per Sect. 2. Then $\frac{68}{12} \frac{8}{2}+\frac{93}{12}=$ $\frac{161}{12}$, and $\frac{161}{12}=13 \frac{5}{12}$ the Sum required.

Or you may bring only the Fractions to one Denomination.
Thus, $5 \frac{2}{5}$ and $7 \frac{3}{7}$ will become $5 \frac{8}{12}$ and $7 \frac{9}{12}$.
Then $5 \frac{8}{12}+7 \frac{9}{12}=12 \frac{17}{12}$. That is, $13 \frac{5}{12}$. As before.

## Sect. 6, Subtration of 范actiong.

R U L E.

SUBTRACT one Numerator from the other (according as the Queftion requires) and their Difference will be a new Numerator, under which fubfcribe the Common Denominator, as in Addition.

$$
E X A M P L E
$$

Let it be required to take $\frac{2}{9}$ out of $\frac{3}{7}$. Firf $\frac{2}{9}$ and $\frac{3}{7}$ per Sect. 2. will become $\frac{14}{63}$ and $\frac{27}{63}$; then $\frac{27}{63}-\frac{14}{63}=\frac{13}{63}$, that is, $\frac{2}{7}-\frac{2}{9}=\frac{13}{63}$. As was require

$$
E X A M P L E
$$

It is required to fubtract $\frac{2}{3}$ of $\frac{8}{9}$ from $\frac{13}{14}$. Firft, $\frac{2}{3}$ of $\frac{8}{9}=\frac{16}{27}$ per Sect. 1. Again $\frac{10}{2} \frac{6}{7}$ and $\frac{13}{13}$ will become $\frac{224}{37}$ and $\frac{351}{315}$. per Sect. 2. Then $\frac{35}{3} \frac{1}{78}-\frac{224}{3} \frac{24}{78}=\frac{127}{3} \frac{27}{78}$.

$$
E X A M P L E \cdot 3
$$

From $6 \frac{1}{8}$ fubtrat $3 \frac{1}{4} \frac{9}{5}$. Firft, $6 \frac{1}{8}=\frac{49}{8}$, and $3 \frac{10}{4} \frac{163}{88}=\frac{163}{48}$ per Rule Sect. 3. Again, $\frac{49}{8}=\frac{2352}{384}$, and $\frac{163}{48}=\frac{1304}{384}$, per Rule Sect. 2. Then, $\frac{2352}{38 t}-\frac{1304}{38 t}=\frac{1048}{38 t}=2 \frac{280}{384}=2{ }_{4}^{35}$. Or otherwife thus: Firf,

Chap. 4.
Firft, $6 \frac{1}{8}=5 \frac{9}{8}$, then bring $\frac{9}{8}$ and $\frac{19}{48}$ into one Denomination, wiz.


Then $5 \frac{432}{3} \frac{2}{4}-3 \frac{152}{3} \frac{2}{84}=2 \frac{15}{3} \frac{8}{8} \frac{1}{7}=2 \frac{35}{+\frac{5}{8}}$. As before.

$$
E X A M P L E .
$$

Let it be required to fubtract $\frac{3}{7}$ of $\frac{5}{5}$ of $\frac{2}{3}$ from 7 .
Firft, $\frac{3}{5}$ of $\frac{5}{9}$ of $\frac{2}{3}=\frac{3}{1} 8 \frac{0}{9}$. And $7=6 \frac{188}{189} 9$.
Then $6 \frac{189}{189}-\frac{30}{189}=6 \frac{159}{189}=6 \frac{53}{63}=7-\frac{3}{7}$ of $\frac{5}{9}$ of $\frac{2}{3}$. As was required.

If thefe few Examples be well underfood, the whole Bufinefs of adding and fubtracting Vulgar Fractions will be eafy; which is really much more difficult to perform than either Multiplication or Divifion; as will appear in the next Section.

## Sect. 7. 9Multiplication of fractions.

IN order to perform either Multiplication or Divifion, you muft prepare the Terms to be multiplied (or divided) thus; reduce Compound Fractions to Simple ones, per Sect. I. Bring mixed Numbers into improper Fractions, and exprefs whole Numbers Fraction-wife, per Sect. 3. Alfo it will be convenient to abbreviate them to their fralleft Terms, when it can be done. Then Multiplication may be thus performed.
Rule. $\left\{\begin{array}{c}\text { Multiply the Numerators one into another for a new } N u \text { - }\end{array}\right.$ merator; and the Denominators one into another for a new Denominator. As in thefe

$$
E X A M P L E S
$$

1. The Product of $\frac{2}{5}$ into $\frac{3}{7}=\frac{5}{35}$. That is, $\frac{2 \times 3}{5 \times 7}=\frac{6}{35}$.
2. And the Products of $\frac{9}{18}$ into $\frac{20}{2}=\frac{180}{4} \frac{1}{3}$. Or $\frac{5}{12}$.
3. Again, the Product of $\frac{7}{15}$ into $\frac{2}{5}$ of $\frac{5}{7}=\frac{70}{355}$. Or $\frac{2}{11}$.

For $\frac{2}{5}$ of $\frac{5}{7}=\frac{1}{3} \frac{1}{5}$. Then $\frac{7}{15} \times \frac{10}{35}=\frac{70}{5} 85=\frac{2}{11}$.
4. Let it be required to multiply 6 with $3 \frac{2}{5}$. Thefe prepared for the Work will ftand thus. $\frac{6}{2} \times \frac{12}{5}$.
viz. $6=\frac{6}{5}$ and $3 \frac{2}{5}=\frac{17}{5}$. Then $\frac{6}{1} \times \frac{17}{5}=\frac{102}{5}$, or $20 \frac{2}{5}$.
Or, otherwife thus $6 \times 3=18$. And $\frac{2}{5} \times 6=\frac{12}{5}=2 \frac{2}{5}$.
Then $18+2 \frac{2}{5}=20 \frac{2}{5}$. As before.
5. Let it be required to multiply $7 \frac{4}{9}$ with $5 \frac{3}{7}$.

Firtt $7 \frac{4}{9}=\frac{67}{9}$ and $5 \frac{3}{7}=\frac{3,8}{1,}$. Then $\frac{67}{9} \times \frac{38}{7}=\frac{2546}{63}=40 \frac{25}{63}$.
Now the Reafon of this Rule for multiplying of Fractions, and confequently of thefe Operations, and all others performed by it ; will be evident from this following.

Viz. If $\frac{4}{2}$ be multiplied with $\frac{12}{3}$ accoording to the Rule, their Product will be $\frac{48}{6}$. But $\frac{48}{6}=8$.

Now $\frac{4}{2}=2$, and $\frac{12}{3}=4$ per Sect. 3. But $4 \times 2=8$. Ergo, \&c.

## Sect. 8. Divifion of fractiong.

THE Fractions being firft prepared as before directed, Divifion may be thus performed:

Rule. $\left\{\begin{array}{l}\text { Multiply the Numerator of the Dividend into the Deno- } \\ \text { minator of the dividing Fraction for a new Numerator: and } \\ \text { multiply the other Numerator and Denominator together for a } \\ \text { new denominator. }\end{array}\right.$

$$
E X A M P L E S
$$

1. Let $\frac{6}{35}$ be divided by $\frac{3}{7}$, viz. $\left.\frac{3}{7}\right) \frac{6}{35}\left(\frac{42}{105}=\frac{2}{5}\right.$ the Quotient.

That is, according to the Rule $6 \times 7=42$ the new Numerator, and $35 \times 3=105$, the new Denominator, $\xi^{\circ} \mathrm{c}$. as above.
2. Let it be required to divide $\frac{20}{27}$ by $\frac{5}{5}$, viz. $\left.\frac{5}{12}\right) \frac{20}{2} \frac{2}{7}\left(\frac{24}{13} \frac{5}{5}=1 \frac{7}{8}\right.$.

For $12 \times 20=240$ the new Numerator, and $27 \times 5=135$ the new Denominator.
3. Suppofe it were required to divide $\frac{2}{T I}$ by $\frac{2}{5}$ of $\frac{5}{7}$.

Firft, $\frac{2}{5}$ of $\frac{5}{7}=\frac{10}{3} 5$. Then $\left.\frac{10}{3} \frac{2}{5}\right) \frac{2}{11}\left(\frac{7}{110}=\frac{7}{11}\right.$.
4. Let $20 \frac{2}{5}$ be divided by $3 \frac{2}{5}$; viz. $\frac{102}{5}$ by $\frac{1}{5}$ :

For $20 \frac{2}{5}=\frac{1022}{5}$, and $3 \frac{2}{5}=\frac{17}{5}$. Then $\left.\frac{17}{1}\right) \frac{102}{5}(=6$ the Quotient.
5. Let it be required to divide $40 \frac{26}{63}$ by $5 \frac{3}{7}$.

Firft, $40 \frac{26}{63}=\frac{254 n}{63}$, and $5 \frac{2}{7}=\frac{38}{7}$. Then $\left.\frac{38}{7}\right) \frac{2546}{63}\left(\frac{11982}{2374}\right.$. But $\frac{17822}{2399+}=7 \frac{4}{9}$ the true Quotient required.
6. Suppofe it were required to divide 13 by $\frac{5}{5}$. Firt, ${ }_{13}=\frac{13}{1}$. Then $\left.\frac{5}{7}\right) \frac{13}{1}\left(\frac{21}{5}=18 \frac{3}{5}\right.$, the Quotient.
7. Again, let it be required to divide $\frac{5}{7}$ by 6 . Diz. $\left.\frac{6}{1}\right) \frac{5}{7}\left(\frac{5}{42}\right.$ for the Quotient required.
N. B. From hence you may obferve, that when any whole Number is divided by a Fraction lefs than Unity or I, the Quotient will be greater than the Number propufed to be divided: But if any Fraction be divided by a whole Number, greater than I, then the Quotient will be lefs than the Dividend: As in the two laft Examples.

As to the Reafon (or Proof) of this Rule for dividing Fractions: It is only the Converfe to that of Multiplication, and will be very evident from this following.

Let $\frac{48}{6}$ be divided by $\frac{4}{2}$. Which according to the Rule is thus, $\left.\frac{4}{2}\right) \frac{48}{6}\left(\frac{26}{24}=4\right.$. The true 2 uotient. Now $\frac{48}{8}=8$. And $\frac{4}{2}=2$. per Sect. 3. Confequently $\frac{48}{6}$ divided by $\frac{4}{2}$ is but the fame with 8 divided by 2, viz. 2) 8 (4. The Quotient as before.

I could have inferted Geometrical Demonftrations, for the Rules of Multiplication and Divifion of Fractions; but fuppofing the Learner purely unacquainted with thofe kind of Demonftrations, I thought thefe might be more intelligible to him, efpecially in this place.

## C H A P. V.

## Of Decimal sractions.

WHEN, or by whom, this excellent Invention of Decimal Arithmetick, was firft introduced is uncertain; but doubtle/s it's Improvements, and the Perfections it is now in, is owing to latter Years.

## Sect. I. Of jatationt.

IN Decinal Fractions, the Integer or whole Thing (whether it be Coin, Weight, Meafure, or Time, \&c.) is fuppofed to be divided into Ten equal Parts; and every one of thofe Ten Parts are fuppofed to be fubdivided into other Ten equal Parts, \&c. ad infinitum.

The Integer being thus divided (by Imagination) into 10,100, 1000, 10000, Eic. equal Parts, becomes the Denominator to the Decimal Fractions.

Now thefe Denominators are feldom or never fet down, but only the Numerators; and thofe are either diftinguified, or feparated from whole Numbers by a Point or a Comma.

Thus, 5,4 is $5 \frac{4}{10}$. and 0,7 is $\frac{7}{10}$. 35,05 is $35 \frac{5}{x^{5} 0}, \varepsilon^{\circ} c_{0}$
But before we proceed further in Notation, it will be convenient for the Learner to confider the following Table, (taken out of the learned Mr Oughtred's Clavis Mathematica) which flews the very Foundation of Decimal Fractions.


By this Table it is evident, that as in whole Numbers or Integers, every Degree from the Units Place increafes towards the left-hand by a Ten-fold Profortion: So in Decimal Parts every Degree is decreafed towards the right-hand by the fame Proportion, viz. by Tens.

Therefore thefe Decimal Parts or Fractions, are really mofe Homogeneal, or agreeing with whole Numbers, than Vulgar Fractions; for indeed all plain Numbers are in effect but Decimal Parts one to another.

That is, fuppofe any Series of equal Numbers, as 444, $\vartheta^{\circ} \mathrm{c}$. The firft 4 towards the Left is $T_{e n}$ times the Value of the 4 irt the middle, and that 4 in the middle is $\mathcal{T}_{\text {en }}$ times the Value of the laft 4 to the Right of it, and but the Tenth Part of that 4 on the left, $\mathrm{E}^{\circ} \mathrm{c}$.

Therefore all or any of them may be taken either as Integers, or Parts of an Integer: If Integers, then they muft be fet down without any Comma or feparating Point betwixt them thus, 444 But if Integers, and one Part or Fraction, put a Comma betwixt them thus, 44,4 which fignifies 44 whole Numbers, and 4 Tenths of an Unit : Again, if two Places of Parts be required, feparate them with a Comma thus, 4,44 viz. 4 Units, and 44 bundred Parts of an Unit, $E^{\circ} c$.

From hence (duly compared with the Table) it will be eafy to conceive that Desimal Parts take their Denomination from the Place of their laft Figure.

Cyphers annexed to Decimal Parts, alter not their Value. As , 50 , and, 500 , or, 5000 , छ$c$. are each but 5 Tenths of an Unit. For $\frac{50}{10 \%}=\frac{3}{10}$. And $\frac{500}{1000}=\frac{5}{10}$. Or $\frac{5000}{10000}=\frac{5}{70}$ Per Serf. 4. of the laft Chapter.

But Cyphers prefixed to Decimal Parts decreafe their Value, by removing them further from the Comma.

Thus, $\left\{\begin{aligned} &, 5=5 \text { Tenth Parts. } \\ &, 05=5 \text { Parts of a Hundred. } \\ &, 005=5 \text { Parts of a Thoufand. } \\ &, 0005=5 \text { Parts of Ten Thoufand, \&c. }\end{aligned}\right.$
Confequently the true Value of all Decimal Parts are known by their Diffance from the Units Place; the which being once right. ly underftood, the reft will be eafy.

## Sect. 2. GDaitton and Subftation of Decimaly.

IN fetting down the propofed Numbers to be added, or fubtracted, great care muft be taken in placing every Figure directly underneath thofe of the fame Value, whether they be mix'd Numbers, or pure Decimal Parts, and to perform that you muft have a due regard to the Comma's, or feparating Points, which ought always to ftand in a direct Line one under another; and to the Right-hand of them carefully place the Decimal Parts, according to their refpective Values, or Diftances from Unity. Then and from their Sum, or Difference, cut off fo many Decimal Parts as are the moft in any of the given Numbers.

## E XAMPLES in goditiat.

Let it be required to find the Sum of thefe following Numbers, viz. $34,5+65,3+128,7+95+87,8+7,9$, which boing nuly placed, will ftand

Thus, $\left\{\begin{array}{r}34,5 \\ 65,3 \\ 128,7 \\ 95,0 \\ 8,8 \\ 7,9\end{array}\right.$

$$
E X A M P L E
$$

Let it be required to find the Sum of $25,854+34,578+$ $9,076+13,907$.

$$
\begin{array}{r}
25,854 \\
34,578 \\
9,076 \\
13,907 \\
\hline 83,415
\end{array}
$$

When the Decimal Parts propofed to be added (or fubtracted) have not the fame Number of Places, you may for convenience of Operation fupply or fill up the void Places, by annexing Cy phers. As in there Examples.

| EXAMPLE 3. | EXAMPLE 4. | EXAMPLE 5 . |
| ---: | ---: | :---: |
| 45,0700 | 574,678953 | 0,975642 |
| 50,7580 | 95,796430 | , 745257 |
| 123,0057 | 78,054600 | , 000598 |
| $-74,7020$ | 54,789000 | , 800700 |
| 24,8000 | 8,90000 | , 640530 |
| 318,3357 | 812,218983 | 3,162727 |

## E $X A M P L E S$ in Subftationt.

Let it be required to find the Difference between 45,375 and 74,284 .

EXAMPLE 1. EXAMPLE 2. EXAMPLE 3.
That is, $\begin{array}{lll}\text { From 74,284 } \\ \text { Take } 45,375\end{array} \quad \begin{aligned} & \text { From 437,5 } \\ & \text { Remains } 28,9 \times 9\end{aligned} \quad \begin{aligned} & \text { From 75,0034 } \\ & 347,6543\end{aligned} \quad \frac{\begin{array}{l}\text { Take } 57,875\end{array}}{17,1284}$

$$
E X A M P L E
$$

Let it be required to find the Excefs between 562 and $93,57^{8} 4^{\circ}$

$$
E X A M P L E 4 . \quad E X A M P L E 5
$$

That is, $\begin{cases}\text { From 562, } & \text { From 345,7578 } \\ \text { Take 93,5784 } & \text { Take } 157, \\ \hline\end{cases}$
The Excefs $\frac{968,4210}{188,7578}$
Note, The two laft Examples are fuppofed to be fupplied with Cyphers, which if actually done would ftand thus,

$$
\begin{aligned}
& \text { 562,0000 } \\
& \text { 345,7578 } \\
& \text { Remains } \frac{93,5784}{468,4216} \text { As before, } \quad \frac{157,0000}{188,7578}
\end{aligned}
$$

| $E X A$ | P L E | $E X A M P L E$ |
| :---: | :---: | :---: |
| From | 0,547893 | From 1,000000 |
| Take | 0,439758 | Take 0,997543 |
|  | 0,108135 | 0,002457 |

The Proof of Addition and Subtraction in Decimals, is the fame with that of whole Numbers, page $13, \delta^{\circ} c$.

## Sect. 3. Souttiplication of Eecumats.

WHETHER the Factors or Numbers to be multiplied are pure Decimals, or mixed. Multiply them as if they were all whole Numbers, and for the true Value of their Product obferve this

$$
\begin{aligned}
& \int \text { Cut off (viz. Separate with a Comma) fo many Places } \\
& \text { of Decimal Parts in the Product, as there are in both } \\
& \text { the Factors accounted together. As in thefe: } \\
& \text { EXAMPLE1. EXAMPLE2. } \\
& \text { 3,024 } \\
& \begin{array}{r}
2,23 \\
9072
\end{array} \\
& 6048 \\
& \frac{6048}{6,7435^{2}} \\
& \text { 32,12 } \\
& \begin{array}{r}
24,3 \\
9030
\end{array} \\
& 12848 \\
& \frac{6424}{780,516}
\end{aligned}
$$

The Reafon why fuch a Number of Decimal Parts muft be cut off in the Product, may be eafily deduced from thefe Examples. Thus,

In Example I. It is evident, that 3, the whole Number in the Multiplicand, being multiplied with 2, the whole Number in the Multiplier; can produce but 6 (viz. $3 \times 2=6$ ). So that of neceffity all the other Figures in the Product muft be Decimal Parts ; according as the Rule directs.

Or, the Rule is evident from the Multiplication of whole Numbers only: Thus, fuppofe 3000 were to be multiplied with 200, their Product will be 600000 ; That is, there will be fo many Cyphers in the Product, as are in both the Factors. (Vide page 18.) Now if, inftead of thofe Cyphers in the Factors, we fuppofe the like Number of Decimal Parts ; then it follows, that there ought to be the fame Number of Decimal Parts in the Product, as there were Cyphers in the Factors.

Again, the Rule may be otherwife made evident from Vulgar Fractions, thus: Let 32,12 be multiplied with 24,3 , and
62 Geitbmetick. Part I.
and their Product will be 780,516 as in Example 2, above. Now $32,12=32 \frac{12}{100}$. and $24,3=24 \frac{3}{10}$. which being brought into Improper Fractions (per Sect. 3. page 50.) will become $3^{2 \frac{12}{100}}=\frac{3,12}{102}$. and $24 \frac{3}{10}=\frac{843}{10}$.

Then $\frac{3212}{100} \times \frac{24.3}{3}=2 \frac{18051}{1000}$. per Sect. 7 . page 55 . But $\frac{}{2 \frac{8}{1} 05} 50.6=780 \frac{515}{10} 0$. viz. 780,516 , as before.

Any of thefe three Ways do, I prefume, fufficiently prove the Truth of the abovefaid Rule, $\mathcal{E}^{\circ} c$.

| EAMPLE | 3. | $E X A M P L E$ |
| :---: | :---: | :---: |
| 78,546 |  |  |
| $\frac{436}{471276}$ | 5745 |  |
| 235638 |  |  |
| $\frac{314184}{34246,056}$ | $\frac{, 0675}{28725}$ |  |
| 40215 |  |  |

N. B. It fometimes falls out in multiplying Parts with Parts, that there will not be fo many Figures in the Product, as there ought to be places of Decimal Parts by the Rule: In that Cafe you muft fupply their Defect by prefixing Cyphers to the Producz; as in thefe Examples.

| EXAMPLE 5. | EXAMPLE 6. |
| :---: | :---: |
| , 2365 | , 0347 |
| $\frac{, 2435}{11825}$ | $\frac{, 0236}{7095}$ |
| 9460 | 1041 |
| 4730 | 694 |
| , 05758775 | , 00081892 |

When any propofed Number of Decimals is to be multiplied with $10.100 \cdot 1000 \cdot 10000, \mathrm{E}^{\circ} \mathrm{c}$. It is only removing the feparating Point in the Multiplicand, fo many places towards the Right-hand, as there are Cyphers in the Multiplier.

Thus, $, 578 \times 10=5,78$. And, $, 578 \times 100=57,8$.
Again,, $57^{8} \times 1000=578$. Or, $578 \times 10000=5780$.

Thefe things being confidered, it will be eafy to multiply Decimals, and determine their true Products. As in thefe fotlowing Examples.

57,056 multiplied into 0,578 will produce 32,978368
7,6543 into 5,4246 will produce 41,52151578

$$
\begin{aligned}
0,56879 \times 0,05674 & =0,0322731446 \\
0,03246 \times 0,02364 & =0,0007672544 \\
87649 \times 0,03687 & =3231,61863 \\
94,35786 \times 6,57869 & =620,7511100034 \\
3,141592 \times 52,7438 & =165,6995001296
\end{aligned}
$$

Now it oftentimes happens, that it will be needlefs to exprefs all the Figures of the Product at large, (efpecially, when the Factors have each of them many places of Decimal Parts, as in the two laft Examples) only fo many of them as may fuffice for the intended Defign; and yet the Product may be as true to fo many Figures as are retained, as if the Factors had been , multiplied at large. And fuch compendious Contractions are not only of Curiofity, but may alfo be found of great Eafe and Ufe to the ingenious Practitioner ; efpecially in refolving adfected Equations, or in calculating of Trigonometrical Problems by the Natural Sines and Tangents, $\xi^{\circ} c$. All which may be thus performed.

Viz. Set the Unit's Place of the Maltiplier dircotly underneath that Figure of the Multiplicand, whofe Place you intend to kecp in the Product; and place all the other Figures of the Multiplier in a quite contrary Order to the ufual way. Then in multiplying, always brgin at that Figure of the Multiplicand which fands over the Fig'ure wherewith you are then a multiplying, Selting down the fir Figure of each particular Product, direcily underneath one another; get berein you muft bave a due Regard to the Increafe which would arife out of the two next Figures to the Right-hand of that Figure in the Multiplicand which you then begin with.

$$
E X A M P L E
$$

Let it be required to multiply 3,141592 with 52,7438 and let there be only four Places of Decimal Parts retained in the Product.

If the propofed Numbers were to be multiplied at large they muft ftand in a direct Order as unal.

Thus, $\left\{\begin{array}{l}3,141592 \\ 52,7438\end{array}\right\} \begin{gathered}\text { And would produce ten Places of } \\ \text { Parts, as in the laft Example. }\end{gathered}$

But feeing it is required to have only four Places of thofe Parts in the Product, fet them down as before directed, and they will ftand


The Reafon of this Contraction is very obvious from the whole Operation wrought at large.

| Thus $\left\{\begin{array}{r}3,141592 \\ 52,7438\end{array}\right.$ |  |
| ---: | :--- | :--- |
| 25 | 132736 |
| 94 | 24776 |
| 1256 | 6368 |
| 21991 | 144 |
| 62831 | 84 |
| 1570796 | 0 |
| 165,6995 | 001296 |

From bence it is evident, that all the Figures in the Square to the Rigbt-hand, are wholly omitted in the former Contraction; and that the laft fingle Product bere, is the firft there; confequently the Reafon of placing the Multiplier in a reverje Order, muft needs appear very plain.

$$
E X A M P L E 3
$$

Suppofe it were required to multiply 257,356 with 76,48 and to have only the entire Product of integers.

| 257,356 |
| ---: |
| 84,67 |
| 18015 |
| 1544 |
| 103 |
| 20 |
| 19682 |

The fame at large $\left\{\begin{array}{r}257,356 \\ \begin{array}{r}76,48 \\ 20\end{array} 58848 \\ 102 \\ 1544 \\ 15424 \\ 18014\end{array}\right.$
The chiefeft Care and Difficulty that attends thefe Contractions, is the true fetting down of the Units place in the Multiplier underneath the proper Figure of the Multiplicand, according to the defigned Product.

Viz. In Example 1. It was required to have four Places of Decimal Parts in the Product ; therefore the Unit's Place of the Multiplier, was fet under the fourth Place of Decimals in the Multiplicand: And in Example 2, becaufe it was required to have an entire Product of Integers only; therefore the Unit's Place of the Multiplier, was fet under the Unit's Place of the Multiplicand. This, I fay, being once rightly underfood, will render the Method eafy in Practice.

## Sect. 4. Dibition of Decimals.

DIVISIO N is accounted the moft difficult Part of Decimal Arithmetick: In order therefore to make it plain and eafy, it will be convenient to refume what has been faid in page 25 . Viz. $\left\{\begin{array}{l}\text { The Quotient Figure is always of the Same Value or Degree } \\ \text { with that Figure of the Dividend, under wbich the Unit's } \\ \text { Place of it's Product flands. }\end{array}\right.$ As for Inflance, Let 294 be divided by 4.

Now if to the Remainder 2 there be annexed a Cypher (thus, 2,0 ) and then divided on, it muft needs follow that the Unit's Place of the Product arifing from the Divifor into the Quotient, will ftand under the annexed Cypher ; confequently the Quotient Figure will be of the fame Value or Degree with the Place of that Cypher: But that is the next below the Unit's Place, therefore the Quotient Figure is of the next Degree or Place below Unity; That is, in the firf Place of Decimal Parts.

> Thus 4) 2,0 (,5

So that 4) 294,0 (73,5 the true Quotient required.
This being well underftood, Divifion of Decimals may (in all the various Cafes) be eafily performed. However, that it may be rendered plain and eafy even to the meaneft Capacity, if poffible; Let Divifion be again defined, as in page 21.

Viz. If that Number which divides another, be multiplied with the Number which is quoted, their Product will be the Number divided.

This Definition alone (if compared with the Rule, page 61.) will afford a general Rule for difcovering the true Value of the Quotient Figure in Divifion of Decimals. Rule $\left\{\begin{array}{l}\text { The Place of Decimal Parts in the Divifor and Quotient, } \\ \text { being counted together, muft always be equal in Number with } \\ \text { thofe in the Dividend. And from this general Rule arifeth } \\ \text { four Cafes. }\end{array}\right.$

Cafe 1. When the Places of Parts in the Divifor and Dividend are equal, the Quotient will be whole Numbers.

As in thefe Examples.

$$
\begin{array}{cc}
8,45) \begin{array}{l}
295,75(35 \\
253.5
\end{array} & 0,0078), 4368(56 \\
\hline 4225 & \frac{390}{468} \\
\frac{4225}{(0)} & \frac{468}{(0)}
\end{array}
$$

Cafe 2. When the Places of Parts in the Dividend exceed thofe in the Divifor ; cut off the Excefs for Decimal Parts in the Quotient. As in thefe Examples.

$$
\begin{aligned}
& 24,3) 780,516(32,12 \\
& \frac{729}{515} \\
& \frac{486}{291} \\
& \text { 436) } 34246,056(78,546 \\
& \frac{3052}{3726} \\
& \frac{243}{480} \\
& \frac{486}{(0)} \\
& \text { 534) }
\end{aligned}
$$

## $E X A M P L E S$.

Let it be required to divide 192,1 by 7,684 , and 441 by , 7875 .

$$
\begin{array}{cc}
7,684) & 192,100(25 \\
-15368
\end{array} \quad \text {,7875) } 441,0000(560
$$

Cafe 4. If after Division is finifhed, there are not fo many Pigyres in the Quotient, as there ought to be Places of Parts by the general Rule ; fupply their defect by prefixing Cyphers to it.

$$
E X A M P L E S \text {. }
$$

Let it be required to divide 7,25406 by 957 . 957) 7,25406 (,00758 the true Quotient required.

| 669 |
| :--- |
| 5550 |
| 4785 |
| 7656 |
| 7656 |
| $(0)$ |

Again ,575) ,0007475 (,0013
$\frac{575}{1725}$
(o)

Note, When Decimal Numbers are to be divided by 10. 100. 1000. 10000. $\delta^{\circ} c$. that is, when the Divifor is an Unit with Cyphers; Division is performed by removing or placing the feparting Point in the Dividend, fo many Places towards the Left-hand, as there are Cyphers in the Divifor.

$$
\left.\begin{array}{cc}
E X A M P L E . \\
10) & 5784(578,4
\end{array} \quad 100\right) 578,4(57,84
$$

Note, There Operations are the direct Converge to thole in page 62.
I prefume it needles to give more Examples at large; only I Shall infert a few Dividends, and Divifors, with their Quotients, wherein are contained all the Varieties that can happen in Divifin of Decimals.

| 574) $493,066(859$ | $5,74) 49,3066(8,59$ |
| :--- | :--- |
| $574) 48,066(, 859$ | $5,74) 493066,00(85900$ |
| 574) $49,3066(, 0859$ | $, 0574) 493,0665(8590$ |
| $5,74) 4930,66(859$ | $, 0574), 493066(8,59$ |

There is alfo a compendious Way of contracting Divifion, like that of Multiplication, page 64, by which much Labour may be faved; efpecially when the Divifor hath many Places of Decimal Parts in it : And it is thus performed.

Having determined how many Places of whole Numbers there will be in the Quotient, if any at all; or if none, of what Value or Place the firft Figure in the Quotient will be: Then omit, or prick off one Figure of the Divifor at each Operation; viz. for every Figure you place in the Quotient, prick off one in the Divifor; having a due Regard to the Increafe which would arife from the Figure fo omitted.

$$
E X A M P L E
$$

Let it be required to divide 70,23 by 7,9863 .

The Work contracted.

$$
\begin{aligned}
& 7,9863) \left.\begin{array}{c}
70,2300 \\
\frac{638904}{63390} \\
\frac{55904}{7492} \\
718,7938 \\
\hline 305 \\
\frac{239}{66} \\
\frac{64}{(2)}
\end{array} \right\rvert\,
\end{aligned}
$$

The fame at Length.

$7,9863) 70,2300(8,7938$ | 638904 |  |
| ---: | ---: |
| 63396 | 0 |
| 55904 |  |
| 7491 | $\frac{1}{90}$ |
| 718 | $\frac{97}{304}$ |
| 230 | $\frac{58}{230}$ |
| 64 | $\frac{589}{2410}$ |
| 63 | $\frac{8904}{7506}$ |

The Work contracted I prefume is fo obvious (if compared with the fame at large) that it is needlefs to give any farther Explanation of it.

## Sect. 5. To Reduce dulgat Frationg into Decimaly; and the contrary.

A
NY Vulgar Fraction being given, it may be reduced, or rather changed into Decimal Parts equivalent to it. Thus,

Annex Cyphers to the Numerator, and then divide it by Rule $\left\{\begin{array}{l}\text { the Denominator, the Quotient will be the Decimal Parts } \\ \text { equivalent to the given Fraction; or at leaf So near it as } \\ \text { may be thousbt necfary to }\end{array}\right.$ may be thought neceffary to approach.

## $E X A M P L E$.

It is required to change or reduce $\frac{3}{4}$ into Decimals.
4) $3,00(, 75$ The Decimal Parts required.

That is, $\frac{3}{4}=\frac{75}{100}=, 75$.
Again $\frac{x}{2}=, 5$; thus 2) $1,0\left(, 5\right.$. And $\left.\frac{1}{4}=, 25 ; 4\right) 1,00(, 25$. Suppofe it were required to change $\frac{4}{7}$ into Decimals.

$$
\text { 7) } 4,0000000000\left(, 5714285714 \varepsilon^{\circ} c .=\frac{4}{7} .\right.
$$

Note, When the laft Figure of the Divifor, (that is, the Denominator of the propofed Fraction) happens to be one of thefe Figures; viz. 1.3.7. or 9. (as in the Example) then the Decimal Parts can never be precifely equal to the given Fraction; yet by continuing the Divifion on, you may bring them to be very near the Truth. As in this Example ; Suppofe it was required to change $\frac{1}{1} \frac{1}{3}$ into Decimal Parts.

I3) $1,0000(, 07692307692307$ E9c. ad infinitum.
$\frac{91 \ldots}{90}$
$\frac{78}{120}$ That is, 0,07692307692307= -i ferè.

120 And from hence it may be farther 117 obferved; that in thefe imperfect Quotients, the Figures do return again and circulate in the fame Order as before: as you may eafily perceive they begin to do in the feventh Place of both thefe laft Examples.
\&c. As at firf.
Thefe being underfood, it will be eafy to find the Decimal Parts equivalent to any known Part or Parts of Coin, Weights, Meafures, Time, $\xi^{\circ} c$. If you firft reduce the given Parts of Coin, $E^{\circ} c$. into a Vulgar Fraction, whofe Denominator is the Number of thofe known Parts contained in the Integer, and the given Parts it's Numerator.

## Examples in Coin, \&c.

1. Let it be required to find the Decimals of 16 s .6 d . Firft 16 s . $=\frac{15}{2} \frac{0}{6}$ of one Pound, and $6 \mathrm{~d} .=\frac{1}{40}$ of I l.

But $\frac{10}{20}+\frac{1}{40}=\frac{33}{40}$. Then 40) $33,000(, 825$ the Decimal Parts required: That is, $825=16 \mathrm{~s} .6 \mathrm{~d}$.

Again, Suppofe it were required to find the Decimals equal to 3l. 13 s. 4 d.

Here

Here $3 l$. is 3 Integers, and $13 \mathrm{~s} .=\frac{13}{20}$ of $1 l$. and $4 d$. $=\frac{1}{2} \frac{4}{25}$. But $\frac{13}{2} \frac{1}{2} \frac{1}{240}=\frac{160}{240}$. Then 240) $160,000\left(0,666666 \mathrm{Ec}_{\text {. }}\right.$. Hence 3l. 13s. $4 d .=3,666666 \sigma^{\circ} \mathrm{c}$. As was required.
2. What are the Decimals equal to $7^{\frac{3}{4}}$ Inches, one Foot being made the Integer.

Firf, 7 Inches are $\frac{7}{12}$ of I Foot, and $\frac{3}{4}$ of I Inch are $\frac{3}{48}$. But $\frac{7}{12}+\frac{\frac{3}{48}}{48}=\frac{3 \frac{3}{8}}{48}$. Then 48) $31,000\left(, 64583 \varepsilon^{\circ} c\right.$. $=7 \frac{3}{4}$ Inches.
3. Let it be required to change 8 Oz . I9 Pwt. 8 Grains into Decimals; one Pound Troy being the Integer.

Thefe being reduced into the leaft Terms, and added together, will become $\frac{43}{5} \frac{4}{5} \frac{4}{60}$ of 1 Pound.

Then 5760) 4304,000 (,74722 8\%c. The Decimals required.
And thus may any propofed Parts of Coin, Weights, Meafures, $E^{\circ} c$. be reduced or changed into Decimal Parts; which perhaps may at firft feem fomewhat tedious in Practice, but being a little acquainted with them it will be found very eafy; and the ingenious Practitioner will (with a little Confideration) foon find how to reduce them almof mentally; or with the help of a very few Figures, without the ufe of fuch large Tables as are ufuaily inferted in Books of Decimal Arithmetick; or at moft they may be contracted into fuch as thefe following, which if duly applied to thofe Tables in Chap. 3. will be found very ufeful.

Decimal Tables.

| In Englifh Coin. $\begin{aligned} & 0,05 \ldots \ldots=1 \mathrm{~s} . \\ & 0,0046667=1 \text {. } \\ & 0,00104167=1 \text { Farthing. } \\ & 1 l \text { being the Integer. } \end{aligned}$ | Averdupois IV eight. $0,0625 \ldots=1$ Ounce $0,00390625=1$ Dram. ilb. being the Integer. |
| :---: | :---: |
| Troy Weight. <br> $0,05 \ldots \ldots=1$ Pwt. <br> $0,00208333=1$ Grain. <br> I Oz . being the Integer. | Averdupois Great Weight. <br> $0,25 \ldots \ldots=\frac{7}{4} C$. <br> $0,00892857=1 \mathrm{lb}$. <br> $0,00055803=1$ Ounce. <br> I C. being the Integer. |
| Apothecaries Weight. <br> $0,125 \ldots \ldots=1$ Dram. <br> $0,04166667=1$ Scruple. <br> $0,00208333=1$ Grain. <br> I Oz. being the Integer. | Time. <br> $0,04166667=1$ Hour. $0,00069444=1$ Minute. $0,00001157=1$ Second. <br> 1 Day, or 24 Hours, being made the Integer. |

The Ufe of thefe Tables will be evident by the following E $X A M P L E$.

Let it be required to find the Decimal Parts equivalent to 17 s. 9d. 2 Farthings
Firft $0,05=1 \mathrm{~s}$. Therefore $17 \times, 05=85 \ldots=175$. And, $004166=1 d$. Therefore, $004166 \times 9=, 037494=9 d$.

$$
\operatorname{Al}(02), 00 \not 1166\left(=, 002083=\frac{1}{2} d .\right.
$$

Confequently their Sum, viz. $0,889577=17$ s. $9^{\frac{1}{2}}{ }^{2}$.
Now to find the Value of Decimals in known Parts of Coin or Weights, $\varepsilon^{\circ}$ c. is only the Converfe of the former Work, and is thus performed.

Multiply the given Decimals with the Denominator of the Vulgar Fraction required: That is, multiply the Decimals with fuch a Number of Units as are contained in the next lower Denomination of that Kind or Species which your Decimal is of; and the Product will be the Number required.

$$
E X A M P L E
$$

1. What is the Value of 0,825 Decimals of I Pound Sterling. That is, how many Shillings, Pence, $E^{\circ} c .=, 825$. Firft, the next lower Denomination is 20, becaufe 20 s. make one Pound.

Therefore 0,825
Shillings $\frac{20}{16,500}$ and Parts of 1 Shilling, Pence $\frac{12}{6,000}$ Anfwer $0,825=16 \mathrm{~s} .6 \mathrm{~d}$.
Again, What are the known Parts of Englifh Coin equal to 3,666666 Decimals.

Here the 3 Integers are ${ }_{3}$ Pounds. Then ,666666

$$
\begin{array}{lr}
\text { Shillings } & \frac{20}{13,333320} \\
\frac{12}{066640}
\end{array}
$$

Anfwer $3,666666=3 l$. $13^{\text {s. }} 4 d$.

$$
\text { Pence } \frac{3333^{2}}{3,999^{8} 40}=4 \text { near. }
$$

What is the Value of 0,74722 Parts of Ilb Troy.


And thus any propofed Number of Decimals may be turned or changed into the known Parts of what they reprefent, viz. Whether they be Parts of Coin, Weights, Meafures, or Time, $\Xi^{\circ} c$.

I have omitted inferting more Examples of this kind, becaufe I take the Excellency, and indeed the chief Ufe of Decimal Fractions to confift more in Geometrical Computations, than in the common or practical Parts of Arithmetick, as will appear further on; although even in thofe they are very ufeful upon feveral Accounts; efpecially in the Computations of Intereft and Annuities, $\mathcal{E}^{\circ}$. But of that more in it's proper Place. I fhall therefore conclude this Chapter, with a Remark or two upon the Nature and Properties of Fractions in general.

If any given Number (whether it be whole or mixed) be multiplied with a Fraction either Vulgar or Decimal, the Product will be lefs than the Multiplicand, in fuch a Proportion as the multiplying Fraction is lefs than an Unit or 1.

That is; as the Denominator of the Fraftion is to it's Numerator, fo will the given Number be to the Product.

Therefore, whenever any Number is to be multiplied with a Fraction, whofe Numerator is an Unit: Divide that Number by the Denominator of the Fraction, and the Quotient will be the Product required. Thus $12 \times \frac{1}{4}=3$. And $12 \div 4=3$. Again, $12 \times \frac{1}{2}=6$. And $12 \div 2=6$, $\varepsilon^{\circ} c$.

From hence it follows, that if any Number be divided by a Fraction, the Quotient will be greater than the Dividend, by fuch a Proportion as Unity is greater than the dividing Fraction.

Thus $12 \div \frac{x}{4}=48$, viz. $\frac{1}{4}: 1:: 12: 48$, $\xi^{\circ} c$. But the Truth of thefe will be beft underftood after the next Chapter.

## C H A P. VI.

Of Cantintien Ppzopatians, and bow to change or vary the Order of Tbings.

Sect. I. Concerning Arithmetical Progreffion, ufually called Arithmetical Proportion Continued.

WHEN any Rank or Series of Numbers do either increafe or decreafe by an equal Interval or common Difference; thofe Numbers are faid to be in Arithmetical Progreffion.
 $\left\{\begin{array}{l}7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2.1\end{array}\right\}_{\text {mon Difference is } \mathrm{I} \text {. }}$


And fo of any other Series, whofe common Difference is 3. 4 - 5. ऊ\%

## Lemma 1.

If any three Numbers be in Arithmetical Progreffion, the Sum of the two Extremes (viz. the firf and laft) will be equal to the Double of the Mean or middle Number.

As in thefe, 2.4.6. Or 3.6.9. Or 3.7. ir.
Viz. $2+6=4+4$. Or $3+9=6+6$. And $3+11=7+7$. E. $_{6}$. Lemma 2.
If any four Numbers are in Arithmetical Progrefion, the Sum of the two Extremes will be equal to the Sum of the two Means.

As in thefe, 2.4.6.8. Or 3.6.9. 12.
Viz. $2+8=4+6$. And $3+12=6+9$. Eve.

## Corollary I.

From thefe two Lemma's it is eafy to conceive, that if never $\int_{0}$ many Numbers be in Arithmetical Progrefion, the Sum of the two Extremes will be equal to the Sum of any two Means, that are equalby difant from thofe Extremes.

As in thefe, $2 \cdot 4 \cdot 6$. 8 . 10 • 12 . 14 . 16.
Then $2+16=4+14=6+12=8+10$.
Or if the Number of Terms be odd, as thefe,

Then $2+18=4+16=6+14=8+12=10+10$. Lemma 3.
Every Series of Numbers in Arithmetical Progreffion is compofed of the Interval or common Difference, fo often repeated as there are Terms in the Progreffion, except the firft.

As in thefe, 1.3.5•7•9.11.13.15•17. छ'c.
Here the Interval or common Difference being two, it will be $1+2=3 \cdot 3+2=5 \cdot 5+2=7.7+2=9.9+2=11$ 。 $11+2=13.13+2=15 . \quad 15+2=17$. go $^{\circ}$.

$$
\text { Corollary } 2 .
$$

Henie it is evident, that the Difference betwixt the two Extremes (viz. I and 17) is compofed of the common Difference, multiplied into the Number of all the Terms, excepting the firft.

As in the aforefaid Progreffion, 1. $3 \cdot 5 \cdot 7 \cdot 9 \cdot 11.13 \cdot 15 \cdot 17$.
The
$\left.\begin{array}{l}\text { The Number of Terms withour the firft is } 8 \\ \text { The common Difference is } 2\end{array}\right\}$ Multiply

## The Difference betwixt the two Extremes is 10

Propofition I.

In any Series of Numbers in Arithmetical Progreffion, the two Extremes, and the Number of Terms being given, thence to find the Sum of all the Series.
I heorem I. $\left\{\begin{array}{l}\text { Multiply the Sum of the two Extremes into the } \\ \text { Number of all the Terms; and divide the Product } \\ \text { by 2. The Quotient will be the Sum of all that Series. } \\ \text { Per Corol. I. }\end{array}\right.$

$$
E X A M P L E
$$

It is required to find the Number of all the Strokes a Clock ftrikes in one whole Revolution of the Index, viz. twelve Hours.

Here $1+12=13$ the Sum of the two Extremes.

$$
\frac{12}{26} \text { the Number of all the Terms. }
$$

Then 2) $\frac{13}{150(78}$ The Number of Strokes required

$$
E X A M P L E
$$

Suppofe one Hundred Eggs were placed in a Right Line a Yard diftant from one another, and the firf Egg were a Yard from a Bafket; whether or no may a Man gather up thefo 100 Eggs fingly one after another, ftill returning with every Egg to the Bafket and putting it in, before another Man can run four Miles. That is, which will run the greater Number of Yards.
In this Queftion $200+2=202$ Is the Sum of the two Extremes.
And $\times 100$ Is the Number of all the Terms.


Now 4 Miles $=7040$ Yards $\{$ The Yards he runs that takes up But $10100-7040=3060$ the Eggs more than the other.

## Propofition 2.

In any Series of Numbers in Arithmetical Progreffion, the two Extremes and Number of Terms being given; thence to find the common Difference of all the Terms in that Series.
Theorem 2. $\left\{\begin{array}{l}\text { The Difference betwixt the two Extremes, being } \\ \text { divided by the Number of Terms lefs an Unit or } 1 \text {. } \\ \text { The Quotient will be the common Difference of the } \\ \text { Series, Per Corel. 2. }\end{array}\right.$

```
EXAMPLE I.
```

One had Twelve Children that differed alike in all their Ages; the youngeft was Nine Years old, the eldelt was Thirty-fix and a half; what was the Difference of their Ages, and the Age of each?
Here $36,5-9=27,5$ The Difference of the two Extremes. And $12-1=11$. The Numbers of Terms lefs an Unit. Then 11) $27,5(2,5$ The common Difference required. Confequently $9+2,5=11,5$ The Age of the youngelt but one:And $11,5+2,5=14$ The Age of the youngeft but two. And fo on for the reft. Per Corol. 2.

$$
E X A M P L E
$$

A Debt is to be difcharged at eleven feveral Payments to be made in Arithmetical Progreffion. The firt Payment to be Twelve Pounds Ten Shillings, and the laft to be Sixty-three Pounds. What is the whole Debt, and what muft each Payment be?

Per Theorem 1. Find the whole Debt thus:
$12,5+63=75,5$ The Sum of the Extremes. 1 I The Number of Terms.
755
755
2) $830,5(415,25=415$ l. 5s. The whole Debt.

Then, per Theorem 2. find the common Difference of each Payment.

Thus $63-12,5=50,5$ The Difference of the Extremes.
And $\mathbf{I I}-\mathrm{I}=\mathbf{I} 0$ The Number of Terms lefs I .
Then 10) 50,5 (5,05 $=5 l$. Is. The common Difference.
l. s. l. s. l. s.

Confequently $12 \cdot 10+5 \cdot 1=17$. II The fecond Payment.
l. s. l. s. l. s.

And $17.11+5 \cdot 1=22 \cdot 12$ The third Payment, $E^{\circ} \mathrm{c}$.

$$
E X A M P L E
$$

A Man is to travel from London to a certain Place in ten Days, and to go but two Miles the firft Day, increafing every Day's Journey by an equal Excefs; fo that the laft Day's Journey may be Twenty-nine Miles; what will each Day's Journey be, and how many Miles is the Place he goes to diftant from London?

$$
\begin{aligned}
& \text { Firft } 29-2=27 \text { The Difference of the Extremes. } \\
& \text { And } 10-1=9 \text { The Number of Terms lefs } 1 \text {. } \\
& \text { Then 9) } 27 \text { (3 The common Difference. } \\
& \text { Confequently } 2+3=5 \text { The fecond Day's Journey. } \\
& \text { And } 5+3=8 \text { The third Day's Journey, } \xi^{\circ} \mathrm{c} \text {. } \\
& \text { Again } 29+2=31 \text { The Sum of the Extremes. } \\
& 10 \text { The Number of Terms. } \\
& \text { 2) } 310 \text { ( } 155 \text { The Diffance required. }
\end{aligned}
$$

There are eighteen Theorems more relating to Queftions in Arithmetical Progreffion; but becaure they would require a great many Words to fhew the Reafon of them: I therefore refer the Reader to the Second Part, viz. That of Algebra, where he may find their Analytical Inveftigation.

## Sect. 2. *Concerning ©eamettical 1900 poztiont continued; fometimes calied Geometrical Progreffion.

$\mathbf{W}^{\text {HEN a Rank or Series of Numbers do either increafe by }}$ one common Multiplicator, or decreafe by one common Divifor ; Thofe Numbers are faid to be in Geometrical Proportion continued.

$\left\{\begin{array}{l}6 \cdot 32 \cdot 16 \cdot 8 \cdot 4 \text {. Wo'c. here } 2 \text { is the common Divifor. }\end{array}\right.$
Or $\left\{\begin{array}{l}2.6 .18 .54 .162 . \\ \text { E } 62 .\end{array}\right.$ here 3 is the common Multiplier.
162.54.18.6.2. here 3 is the common Divifor.

Note, The common Multiplier (or Divifor) is called the Ratio; and it thews the Habitude or Relation the Numbers have to one another, viz. whether they are Double, Triple, Quadruple, $\xi^{\circ} c_{0}$ which Euclid thus defines.
Ratio (or Rate) is the mutual Habitude or Refpect of two Magnitudes (confequenty two Numbers) of the fame kind each to other, according to 2uantity, Eucl. 5. Def. 3.

Proportion (rather Proportionality) is a Similitude of Ratio's, Eucl. 5. Def. 4.

So that there cannot be lefs than three Terms to form a Proportionality or Similitude of Ratio's ; and if but three Terms, the fecond muff fupply the Place of two, As in thefe 2.4.8. That is, $2: 4:: 4: 8$. (of $::$ fee page 5 .)
Here 4 the middle Term fupplies the Place of two Terms, to wit, of the fecond and third; 8 bearing the fame Reafon,

Liken efs,

Likenefs, or Proportion, to 4 , as 4 doth to 2. viz. As 2 : is to $4::$ So is $4:$ to 8 .

## Lemma $\mathbf{I}$.

If three Numbers are proportional, the Re民tangle, or Product of the two Extremes; viz. of the firft and laft Terms will be equal to the Square of the Mean or middle Term. (20 Eucl. 7.)

As in thefe $2: 4:: 4: 8$. Here $8 \times 2=16$ the Product of the Extremes.

And $4 \times 4=16$ the Square of the Mean. Ergo $8 \times 2=4 \times 4$.

> Corol. I.

Hence it follows, that if the Produci of any two Numbers be equal to the Square of a third Number; thofe three Numbers will be in Proportion.

## Lemma 2.

If four Numbers are proportional, the Product of the two Extremes will be equal to the Product of the two Means, (19 Euclid 7.)

As in there, $2: 4:: 8: 16$. Here $16 \times 2=32$.
And $8 \times 4=32$. Confequently $16 \times 2=8 \times 4$.

## Corol. 2.

From bence it follows, that if the Product of any two Numbers, be equal to the Product of any other two Numbers, thofe four Numbers are Proportionals.

And from thefe two Lemma's it will be eafy to conceive, that if never fo many Numbers are in continued Proportion; the Product of the two Extremes, will be equal to the Product of any two Means, that are equally diftant from the Extremes.

$$
\text { As in thefe } 2 \cdot 4 \cdot 8 \cdot 16 \cdot 3^{2} \cdot 64 \cdot \varepsilon^{\circ} c \text {. }
$$

Here $64 \times 2=32 \times 4=16 \times 8$. $8 \%$. And if the Number of Terms be odd,

As in thefe $2 \cdot 4 \cdot 8 \cdot 16: 32 \cdot 64 \cdot 128 . \mathrm{E}^{\circ} \mathrm{C}$.
Then $128 \times 2=64 \times 4=32 \times 8=16 \times 16$.
Note, The Cbaracter made UJfe of to fignify continued Proporsionals is $\div$.

In every Series of $\because$ (viz. of continued Proportionals) that Number which is compared to another, is called the Antecedent of the Ratio; and that Number to which it is compared, is called it's Confequent.

As in there, $2: 4: 4: 8$. Here 2 is the Antecedent, and 4 is the Confequent; and 4 the middle Term is an Antecedent to 8 it's Confequent: whence it follows, that in every Series of $\because$ all the middle Terms between the firft and laft are both Antecedents and Confequents.

As in there, 2 $4 \cdot 4 \cdot 8 \cdot 16 \cdot 32 \cdot 64 . \varepsilon^{\circ} c$. Here $4 \cdot 8 \cdot 16 \cdot 32$. are both Confequents and Antecedents.

For $2: 4:: 4: 8:: 8: 16:: 16: 32:: 32: 64 .{ }^{\circ} \mathrm{c}$.
So that all the Terms except the laft are Antecedents. And all the Termas except the firft are Confequents.

## Lemma 3.

If never fo many Numbers are proportional, it will be: As any one of the Antecedents is to it's Confquent: So will the Sum of all the Antecedents be; to the Sum of all the Confequents. (12 Euclid 5.)

That is, in the foregoing Series.
$2: 4:: 2+4+8+16+32: 4+8+16+32+64$.
For it is evident, that $4+8+16+32+64$, the Sum of all the Confequents, is double to $2+4+8+16+32$ the Sum of all the Antecedents; as 4 is to 2, according to the Ratio, and would have been Triple, or Quadruple, Eg'c. had the Ratio been 3 or $4, \sigma_{6}$.

Note, In cvery Series of $\because$ the Ratio is found by dividing any of the Confequents by $i t$ 's Antecedent.

As in thefe $2: 6:: 6: 18:: 18: 54:: 54: 162$.
Here 2) ó (3 the Ratio. OF 6) 18 ( 3 G\%c.
From the fecond and thind Lemma's may be raifed two general Theorems or Rules, for finding the Sum of any Series in $\div$ without a continued Addition of all the Terms.

Let the Series 2.4.8.16•32.64.128. be given, to find it's Sum.

Suppofe $z=$ the Sum of all the Terms.
Then will $z-128=$ the Sum of all the Antecedents. And $z-2=$ the Sum of all the Confequents.
But 2:4::z-128:z-2, per Lemma 3. Ergo 4z-512=2z-4. per Lemma 2.

Confequently

## Confequently $4 z-2 z=512-4$.

Theorem. $z=\frac{512-4}{4-2}$ In Words at length thus, Theorem I. $\left\{\begin{array}{l}\text { From the Product of the fecond and laft Terms } \\ \text { fubfract the Square of the firft Term, and that Re- } \\ \text { mainder being divided by the Second Term lefs the } \\ \text { firft, will give the Sum of all the Series. }\end{array}\right.$

Or if the firit Term, the common Ratio, and the laft Term be only given. Then,
Theorem 2. $\left\{\begin{array}{c}\text { Multiply the laft Term into the Ratio, and from } \\ \text { their Product fubflract the firft Term; divide that }\end{array}\right.$ Remainder by the Ratio lefs Unity or I , and it will give the Sum of all the Series.
For $4 z-2 z=512-4$. As above.
Confequently $2 z-z=256-2$. viz. the laft divided by 2 .

$$
\text { Tben } z=\frac{256-2}{2-1} \quad \text { Theorem } 2
$$

$$
E X A M P L E
$$

Let $2 \cdot 6 \cdot 18 \cdot 54 \cdot 162 \cdot 486$. be the given Series. Here 2 is the firft Term, 3 is the Ratio, and 486 the laft Term.

But $486 \times 3=1458$. And $145^{8}-2=1456$.
Then $3-1=2$ ) 1456 ( 728 the Sum required.
That is, $728=2+6+18+54+162+486$.
Since in either of thefe Theorems it is required to have the laft Term known (the which in a long Series of $\because \because$, will be very tedious to come at by a continued Multiplication) it will therefore be convenient to fhew how to obtain either the laft Term or any other Term, whofe Place is affigned, without producing all the Terms.

In order to that, it will be neceflary to premife the Coherence or Similitude that is betwixt Numbers in Arithmetical Progreffion and thofe in Geometrical Proportion.

If to any Series of Numbers in $\div \because$, when the firf Term is not an Unit or $\mathbf{I}$, there be affigned a Series of Numbers in Arithmetical Progreffion, beginning with an Unit or I, and whofe common Difference is I. called Indices or Exponents.

$$
\text { Thus, }\left\{\begin{array}{l}
1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot \text { Indices } \\
2 \cdot 4 \cdot 8 \cdot 16 \cdot 32 \cdot 64 \cdot 128, \xi_{6} \div
\end{array}\right.
$$

Then will the Addition or Subftraction of any two of thofe Indices (or Numbers in Arithmetical Progreffion) directly correfpond with the Product, or Quotient of their refpective Terms in the Series of $\because \because$.

That is, $\left\{\begin{array}{l}\text { As } 3+4=7 \\ \text { So } 8 \times 16=128 \text { the feventh Term in } \because \div\end{array}\right.$
Again, $\left\{\begin{array}{l}\text { As } 6+4=10 . \\ \text { So } 64 \times 16=102\end{array}\right.$
A
Or, $\left\{\begin{array}{l}\text { As } 7-3=4 . \\ \text { So } 128 \div 8=16 .\end{array} \quad\right.$ Or, $\left\{\begin{array}{l}\text { As } 6-2=4 \cdot \\ \text { So } 64 \div 4=16 .\end{array}\right.$.
But if the Series of $\because$ begin with an Unit, the Indices muft begin with a Cypher.

As in thefe, $\left\{\begin{array}{l}0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 . \mathcal{E}_{c_{0}} \\ 1 \cdot 2 \cdot 4 \cdot 8 \cdot 16 \cdot 32 \cdot 64 .\end{array}\right.$
Now by the help of the Indices, and a few of the firft Terms in any Series of $\because$; it is plain that any Term whofe Place or Diflance from the firft Term is afligned, may be fpeedily obtained without producing the whole Series.

$$
E X A M P L E
$$

A Man bought a Horfe, and was to give a Farthing for the firft Nail, two for the fecond, four for the third, $\xi^{\circ} c$. in $\div$, the Number of Nails was to be 7 in every Shoe, vix. 28 Nails in all. What muft he have paid for the Horfe?

$$
\text { Firft, }\left\{\begin{array}{l}
0 \cdot 1: 2 \cdot 3 \cdot 4 \cdot 5 \cdot \begin{array}{l}
\text { Indices } \\
1 \cdot 2 \cdot 4 \cdot 8 \cdot 16 \cdot 32 .
\end{array} \text { Farthings in } \div
\end{array}\right.
$$

Then, $\left\{\begin{aligned} 5+5 & =10 \\ 32 \times 3^{2} & =1024\end{aligned}\right.$ And, $\left\{\begin{aligned} 10+10 & =20 \\ 1024 \times 1024 & =1048576\end{aligned}\right.$
Again, $\left\{\begin{aligned} 4+3 & =7 \\ 16 \times 8 & =128\end{aligned}\right.$ Laftly, $\left\{\begin{aligned} 20+7 & =27 \\ 10+8576 \times 128 & =134217728\end{aligned}\right.$
Which is here to be accounted the 28 and laft Term. Becaufe the firft Term in the Series is 1 , which doth neither multiply nor divide.

Now this $\mathbf{1} 34217728$ being the Number of Farthings to be paid for the laft Nail, by it the common Ratio which is 2, and the firft Term which is I, may be found the Sum of all the Series, per Theorem 2.

Chap. 6.
Of perapaztian, \&c.
$1342177^{28}$
$\frac{268435456}{268}$ From this Product fubftract $\mathbf{~}$.
Viz. $268435456-1=268435455$. Then $2-1=1$ the Divifor.
Confequently 268435455 is the Sum of all the Series, or Price of the Horfe in Farthings, which being brought into Pounds, (See page 46) will be 279620 l. 5 s. 3 d. 3 qrs.

$$
E X A M P L E 2 .
$$

A cunning Servant agreed with a Mafter (unfkilled in Numbers) to ferve him Eleven Years without any other Reward for his Service but the Produce of one Wheat Corn for the firl Year; and that Product to be fowed the fecond Year, and fo on from Year to Year until the end of the Time, allowing the Increafe to be but in a ten-fold Proportion.

It is required to find the Sum of the whole Produce.
Firft $\left\{\begin{array}{c}1 \\ 10\end{array} 2^{2} \cdot 3 \cdot 4\right.$. 5. Indices or Years. $\{10 \cdot 100 \cdot 1000 \cdot 10000 \cdot 100000$ Wheat Corns in $\because$
Then $\left\{\begin{array}{l}\text { As } 4+2=6 \\ \text { So } 10000 \times 100=1000000, \text { the 6th Year's Produce. }\end{array}\right.$
And $\left\{\begin{array}{l}6+5=11 \\ 1000\end{array}\right.$
$\{1000000 \times 100000=100000000000$. The eleventh or laft Year's Produce.

Then (either by Theorem 1 , or 2) the Sum of all the Series will be 1IIIIIIIItio Corns. Now it may be computed from Page 3 I and 34, that 7680 Wheat Corns, round and dry out of the middle of the Ear, will fill a Statute Pint. If fo,

Then 7680) 11111111II110 (14467592 Pints, but 64 Pints are contained in a Buthel.

Therefore 64) 14467592 (226056 $\frac{1}{8}$ Bumels. Suppofe it to be fold for 3 Shillings the Buthel;

Then $\frac{\left\{\begin{array}{c}226056 \frac{1}{8}\end{array}\right.}{\frac{3}{678168 \frac{3}{6}}=339081.8 \text { s. } 4 \frac{1}{2} \text { d. A very good Re- }}$ compence for Eleven Years Service.

There are feveral pretty Queftions refolved by Numbers in Arithmetical Progreffion, and by thofe in $\div \div$, which the ingenious Learner will eafily perceive hereafter; viz. When we come to the Solution of Queftions relating to Intereft and Annuities, Efic.

There is alfo a third Kind of Proportion, called Muncal, which being but of little or no common Ure, I thall therefore give but a fhort Account of it.

Mufical Proportion or Habitude is, when of three Numbers; the firft hath the fame Proportion to the third, as the Difference between the firft and fecond hath to the Difference between the fecond and third.

As in thefe, 6 . 8 . 12. viz. $6: 12:: 8-6: 12-8$
If there are four Numbers in Mufical Proportion; The firf will have the fame Proportion to the fourth, as the Difference between the firft and fecond hath tophe Difference between the third and fourth.

$$
\begin{aligned}
& \text { As in there } 8.14 \cdot 24,84 \text {. } \\
& \text { Here } 8: 84:: 14-8=6: 84-21=63 . \\
& \\
& \text { That is, } 8: 84:: 6: 63 .
\end{aligned}
$$

The Metbod of finding out Numbers in Mufical Proportion, is beft expreffed by Letters; as thall be fhewed in the Algebraick Part.

Sect. 3. How to ©jange or Taty the Order of Tbings, \&c.

THIS being a Thing not treated of in any common Books of Arithmetick (that I have had the Opportunity of perufing), made me think it would be acceptable to the young Learner, to know how oft it is poffible to vary or change the Order or Pofition of any propofed Number of Things.

As how many feveral Changes may be rung upon any propofed Number of Bells; or how many feveral Variations may be made of any determined Number of Letters, or any other Things propofed to be varied.

The Method of finding out the Number of Cbanges is by a continual Multiplication of all the Terms in a Series of Arithmetical Progreflions, whofe firft Term and common Difference is Unity or 1, And the laft Term the Number of Things propofed to be varied, viz. $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7$, E ${ }^{\circ}$. As will appear from what follows.
I. If the Things propofed to be varied are only two, they admit of a double Pofition (as to Order of Place) and no more.

$$
\text { Thus, }\left\{\begin{array}{l}
1,2 \\
2,1
\end{array}\right\}=2=1 \times 2
$$

2. And if three Things are propofed to be varied, they may

Chap. 6. Of 1pzopoztion, \&c. $\quad 83$
be changed fix feveral Ways (as to their Order of Place) and no more.

For, beginning with I , there will be $\left\{\begin{array}{l}\mathrm{I} \cdot 2 \cdot 3 \\ \mathrm{I} \cdot 3 \cdot 2\end{array}\right.$
Next, beginning with 2 , there will be $\left\{\begin{array}{l}2 \cdot 1 \cdot 3 \\ 2 \cdot 3 \cdot \mathbf{I}\end{array}\right.$
Again, beginning with 3 , it will be $\begin{cases}3,1,2 \\ 3,2,1\end{cases}$ Which in all make 6 or 3 Times 2 , viz. $1 \times 2 \times 3=6$
Suppofe four Things are propofed to be varied;
Then they will admit of 24 feveral Changes, as to their Order of different Places.


And for the fame Reafon there will be 6 different Changes, when 2 begins the Order, and as many when 3 and 4 begins the Order; which in all is $24=1 \times 2 \times 3 \times 4$. And by this Method of proceeding, it may be made evident, that 5 Things admit of 120 feveral Variations or Changes; and 6 Things of 720 , $8 \%$. As in this following Table.

| The Number of Things propofed to be varied. | The manner bow their feveral Variations are produced. | The different Cbanges or Variations every one of the propofed Numbers can admit of. |
| :---: | :---: | :---: |
| $1{ }^{1}$ | 1 | = |
| 2 | $1 \times 2$ | $=2$ |
| 3 | $2 \times 3$ | $=6$ |
| 4 | $6 \times 4$ | $=24$ |
| 5 | $24 \times 5$ | $=120$ |
| 6 | $120 \times 6$ | $=720$ |
| 7 | $720 \times 7$ | $=5040$ |
| 8 | $5040 \times 8$ | $=40320$ |
| 9 | $40320 \times 9$ | $=362880$ |
| 10 | $362880 \times 10$ | $=3628800$ |
| 11 | $3628800 \times 11$ | $=39916800$ |
| 12 80 | $39916800 \times 12$ | $=479001600$ |

Thefe may be thus continued on to any affigned Number. Suppofe to 24 the Number of Letters in the Alphabet, which will admit of 620448401733239439360000 feveral Variations.

From thefe Computations may be flarted feveral pretty, and indeed, very ftrange Queftions.

## EXAMPLES.

Six Gentlemen, that were travelling, met together by Chance at a certain Inn upon the Road, where they were fo pleafed with their Hoft, and each other's Company, that in a Frolick they made a Contract to ftay at that Place, fo long as they, together with their Hoft, could fit every, Day in a different Order or Pofition at Dinner; which by the foregoing Computations will be found near 14 Years. For they being made 7 with their Hoft, will admit of 5040 different Pofitions; but 5040 being divided by $365^{\frac{1}{4}}$ (the Number of the Days in one Year) will give 13 Years and 291 Days. A very pretty Frolick indeed.

I have been told, that before the Fire of London (which happened Anno 1666) there were 12 Bells in St Mary Le Bow's Church in Cbeapfide, London. Suppofe it were required to tell how many feveral Changes might have been rung upon thofe 12 Bells; and at a moderate Computation how long all thofe Changes would have been ringing but once over.
Firf, $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12=479001600$, the Number of Changes.

Then fuppofing there might be rung ro Changes in one Minute: viz. $12 \times 10=120$ Strokes in a Minute, which is 2 Strokes in a Second of Time: Now according to that Rate there muft be allowed 47900160 Minutes to ring them once over in all their different Changes; viz. 10) 479001600 ( 47900160.

In one Year there is 365 Days, 5 Hours, and 49 Minutes; which, being reduced into Minutes, is 525949 .

Then 525949) 47900160 ( 91 Years and 26 Days.
So long would thofe 12 Bells have been continually ringing without any Intermiffion, before all their different Changes could have been truly rung but once over. It is ftrange, and feems almoft incredible, that a few Things fhould produce fuch Varieties.

But that which feems yet more frange and furprifing (yea, even impofible to thofe who are not verfed in the Power of Numbers)
is, that if two Bells more had been added to the aforefaid 12, they would have advanced the Number of Changes (and confequently the Time) beyond common Belief. For 14 Bells would require (at the fame rate of ringing as before) about 10575 Years to ring all their different Changes but once over.

And if it were poffible to ring 24 Bells in Changes (and at the fame rate of 10 Changes in a Minute, which is 2 Strokes in one Second) they would require more than 11700000000000000 Years to ring them but once over in all therr different Changes; as may eafily be computed from the precedent Table.

## C H A P. VII.

## Of P?zopoztion Dinfunct; commonly called the ©oluen Rule.

$P$Rroportion Disjunct or the ©olorn Hilut, is either Direct or Reciprocal, called Inverfe. And thofe are boin Simple and Compound.

## S E C T. I.

$D^{7}$Irect Proportion is, when of four Numbers, the firft bearing the fame Ratio or Proportion to the fecond; as the third doth to the fourth.

$$
\text { As in thefe } 2: 8:: 6: 24 \text {. }
$$

Confequently, the greater the fecond Term is, in refpect to the firft ; the greater will the fourth Term be, in refpect to the third.

That is, as 8 the fecond Term is 4 Times greater than 2 the firft Term: So is 24 the fourth Term, 4 Times greater than 6 the third Term.

Whence it follows, that if four Numbers are in Direct Proportion, the Product of the two Extremes will always be equal to the Product of the two Means, as well in Disjunct as in continued Proportion; according to Lemma 2. page 77.

For As $2: 2 \times 4:: 6: 6 \times 4$. Or As $3: 3 \times 5:: 6: 6 \times 5$. But $2 \times 6 \times 4=2 \times 4 \times 6$. Or $3 \times 6 \times 5=3 \times 5 \times 6$.
That is, the Product of the Extremes is equal to that of the Means,

Agani, the lefs the fecond Term is, in refpect to the firft; the lees will the fourth Term be in refpect to the third.

As in thefe $18: 6:: 12: 4$.
That is, $18: 18 \div 3:: 12: 12 \div 3$.
But $18 \times 12 \div 3=18 \div 3 \times 12$. Viz. $18 \times 4=6 \times 12$.
Confequently $2 \cdot 8 \cdot 6 \cdot 24$. And $18.6 \cdot 12 \cdot 4$. are true Proportionals, per Corol. 2. page 77.

From thefe Confiderations, comes the Invention of finding a fourth Number in Proportion to any three given Numbers. Whence it is called the Rule of Three.

- For if the fecond Number multiplied into the third, be equal to the firft multiplied into the fourth, it is eafy to conceive, that if the Product of the fecond and third be divided by the firft, the Quotient mult needs be the fourth Number. For if that Number, which divides another, be multiplied into the Quotient produced by that Divifion ; their Product will be equal to the Number divided. See page 21 .

As in thefe $2: 8:: 6: 24$. Here $8 \times 6=48=24 \times 2$.
But if $24 \times 2=48$, then will $48 \div 2=24$. Or $48 \div 24=2$.
Note, Any four Numbers in direet Proportion may be varied feveral Ways. As in thefe.

$$
\begin{aligned}
& \text { Viz. If } 2: 8:: 6: 24 \text {. Then } 2: 6:: 8: 24 \text {. } \\
& \text { And 6:24::2:8. Or 24:6::8:2. छْc. }
\end{aligned}
$$

Thefe Variations being well underftood, will be of no fmall Ufe in the ftating of any Queftion in this Rule of Three.

When three Numbers are given, and it is required to find a fourth Proportional; the greateft Difficulty (if there be any) will be in the right ftating the Queftion, or abffracting the Numbers out of the Words in the Queftion, and placing them down in their proper Order.

Now this will be very eary, if it be truly confidered, that always two of the three given Terms, are only fuppofed, and affigned or limit the Ratio or Proportion. The third moves the Queftion; and the fourth gives the Anfwer.

As for inftance; if 3 Yards of Cloth coft 9 Shillings: What will 6 Yards coft at the fame Rate or Proportion ?

Here 3 Yards, and 9 Shillings, are two fuppofed Numbers that imply the Rate; as appears by the Word [if] viz. If 3 Yards coft 9 Shillings (then comes the Queftion) What will 6 Yards coft?

Chap. 7.
N. B. The Term, which moves the Queftion, hath generally fome of thofe Words before it ; viz. ひauhat will? 青hom many?


Then (carefully obferve this; viz.) The firf Term in the Suppofition muft always be of the fame kind and Denomination with that Term which mones the Queffion. And the Term fought will always be of the fame kind and Denomination with the fecond Term in the Suppofition.

All Queftions in direct Proportion may be anfwered by three feveral Theorems.

Theorem I. $\left\{\begin{array}{l}\text { Multiply the fecond and third Terms together, and } \\ \text { divide their Produnt by the firf Term; the } 2 \text { Qu- } \\ \text { tient will be the Anfwer required. }\end{array}\right.$ yds fail. yds pail.
Thus $3: 9: 5: 6: 18$. The Anfwer.
3) 54 (18 Shillings, $\left\{\begin{array}{l}\text { becaufe the fecond Term } \\ \text { was Shillings. }\end{array}\right.$

Theorem 2. $\left\{\begin{array}{l}\text { Divide the fecond Term by the firf, then multiply } \\ \text { the Quotient into the third Term; and their Pro- } \\ \text { ducz will be the Anfwer required. }\end{array}\right.$ $y d s$ fill. yds failo

$$
3: 9: 0: 6: 18
$$

Thus 3) $9(=3$. Then $3 \times 6=18$, as before.
Theorem 3. $\left\{\begin{array}{l}\text { Divide the third Term by the firft, then multiply } \\ \text { the Quotient into the fecond Term, and ibeir Pro- } \\ \text { duct will be the Anfwer. }\end{array}\right.$ yds firil. yds foil.

Thus 3) $6(=2$. And $9 \times 2=18$, as before.
Here you fee that all the three Theorems are equally true; but the firft is moft general, and ufually practifed. Yet the two laft may be readily performed, when either the fecond or third Term can be divided by the firft; and will be found of fingular Ufe in the Rules of Fellowihip, \&c. as will appear further on.

Quef. 2. If 8 Pbunds of Tobacco cont $\mathrm{r}_{4}$ Shillings; what will half a hundred Weight (viz. 56 Pounds) coft at the fatne Rate?

Thus $8 \mathrm{lb}: 14 \mathrm{~s}$. : : $56 \mathrm{lb}:$, 18 s. The Anfwer.

8) $784(=98$ s. $=42.18$

Or thus 8) $56(=7$. Then $14 \times 7=98$ s. as before.
2uef. 3. If 14 Sbillings will buy 8 Pounds of Tobacco; how much will $4 l .18 \mathrm{~s}$. buy after the fame Raxe?

Stated thus, $14: 8 \mathrm{lb}:: 4 \mathrm{l} .18 \mathrm{~s} .=98 \mathrm{~s} .:$ -
Then $98 \times 8=784$. And 14) 784 ( 56 lb . The Anfwer.
2uef. 4. If half a hundred Weight of Tobacco be worth $4 l .18 \mathrm{~s}$. How much may I buy for 14 Sbillings at that Rate?

Stated thus, $4 \mathrm{l} .18 \mathrm{~s} .=98 \mathrm{s}:. 56 \mathrm{lb}:: 14 \mathrm{~s} .:-$ -
Then $5^{6 \times 14}=784$. And 98) 784. ( 8 lb . The Anfwer.
2uef. 5. Suppofe $4 l .18$ s. will buy 56 Pounds of Tobacco; what will 8 Pounds of the fame Tobacco coft?

This Queftion is thus ftated, $561 \mathrm{~b}: 4 \mathrm{l} .18 \mathrm{~s} .=98 \mathrm{~s} .:: 8 \mathrm{lb}:-$
Then $98 \times 8=784$. And 56) 784 ( $=14$ s. The Anfwer.
Note, The three laft Queftions are only the fecond varied, being propofed purely to give an Inftance how any Queftion in this Rule of Three may be varied, according to page 86.

2uef.6. What will three quarters of a Yard of Velvet coft, when the Price of 21 Yards and a half is worth $22 l .10 \mathrm{~s} .6 \mathrm{~d}$. This Queftion truly ftated will ftand

Thus, $21 \frac{\pi}{2} y d s: 22 l .10$ s. $6 \mathrm{~d} .:: \frac{3}{4}$ to the Anfwer.
Which may be found three feveral Ways; viz. by Reduction; by Vulgar Fractions; and by Decimals.
I. By Reduction. Bring the firft and third Terms into one Denomination; viz. into Quarters, and reduce the fecond Term into it's leaft Denomination, per Sect. 4. page 42.

Thus $21 \frac{x}{2}=86$ Quarters. And 22l. 10s. $6 d .=5406$ Pence.
Then $86: 5406:: 3: 15$ s. $8 \frac{50}{8} \frac{\mathrm{C}}{6}$. For $5406 \times 3=16218$.

Chap. 7.
And 86) $162 \cdot 18\left(=188 \frac{50}{86} \mathrm{~d}\right.$. Then r88 $\frac{50}{86}$ Pence $=15 \mathrm{~s}$. 8 d. $2 \frac{14}{43}$ Farthings; the Anfwer required.
2. The fame Queftion ftated in Vulgar firactions will ftand thus; $21 \frac{1}{2}=\frac{4 i 2}{2}: 22 \frac{23}{4}=\frac{201}{10}:: \frac{3}{4}:$ (See Sect. 3. page 50.) Then $\frac{2011}{40} \times \frac{3}{4}=\frac{2201}{100}$. And $\frac{43}{2}$ ) $\frac{270}{160}\left(=\frac{34}{68} \frac{26}{80}\right.$. page 55,56 .

Thefe $\frac{5406}{6580} 8$ Parts of a Pound are brought into Shillings by multiplying the Numerator with 20, and dividing the Product by it's Denominator, Ecc.

Thus $5406 \times 20=108120$. Arid 6880) $108120(155$. And there remains 4920. Again, $4920 \times 12=59040$.
Then 6880) 59040 ( 8 d . and $\frac{50}{86}$, as before.
3. The fame wrought by Decimal Fractions will be thus;
$21 \frac{1}{2}=21,5 ; 22 l .10 s .6 d .=22,525$, and $\frac{3}{4}=0,75$
Therefore 21,5:22,525::0,75: to the Anfwer.
Then $22,525 \times 0,75=16,89375$

2ueff. 7. If ${ }_{2} C .3$ grs. 21 lb . of Sugar coft 61.1 s .8 d . What will $12 C .2$ grs. coft at the fame Rate?
That is, $2 C .3$ qrs. $2 \mathrm{Ilb}: 6 \mathrm{l} .1 \mathrm{~s} .8 \mathrm{~d} .:: 12 \mathrm{C} .2$ qrs. To what?

| $\frac{4}{11 \text { grs. }}$ | $\frac{20}{121 s}$ | $\frac{4}{50 \text { qrs. }}$ |
| :---: | :---: | :---: |
| $\frac{28}{88}$ | $\frac{12}{250}$ | $\frac{28}{1400 \mathrm{lb}}$ |
| 22 | 121 |  |

Viz. $\overline{308+21}=329 \overline{\mathrm{lb}: 1460 \mathrm{~d}}:: 1400 \mathrm{lb}:-$
Then $1460 \times 1400=2044000$. And 329) $2044000\left(6212 \frac{3}{4} d\right.$. $=251.17 \mathrm{~s} .8 \frac{3}{4} \mathrm{~d}$. the Anfwer required.

The fame Queftion ftated in Decimals will ftand thus ; 2;9375: 6,0833::12,5: Tó the Anfwer.
Then $6,0833 \times 12,5=76,04125$ which being divided by 2,9375 will give 25,8863 , $\varepsilon^{\circ} c$. the Anfwer in Decimals, which brought into Coin, will be $25 l .17 \mathrm{~s} 8 \frac{3}{4} \mathrm{~d}$. as before.

Note, When the firf Term is an Unit or $\mathbf{1}$; the Quefion is anfwered by Multiplication only.

Example. Suppofe I give 5 Shillings 4 Pence for one Ounce of Silver, What muft I pay for $32 \frac{1}{2}$ Ounces at the fame Rate?

That is 1 Ounce : $5 \mathrm{~s} .4 \mathrm{~d}:: 3^{2 \frac{1}{2}}$ Ounces: To, $\mathrm{E}_{\mathrm{c}} \mathrm{c}$. Which is beft flated thus $1: 64 \mathrm{~d} .:: 3^{2}, 5:$

Then $32,5 \times 64=2080 \mathrm{~d}=8 \mathrm{ll} .13 \mathrm{~s} .4 \mathrm{~d}$. the Anfwer required. For 1 neither multiplies nor divides.

When the fecond or third Term is an Unit or r , then the Queftion is anfwered by Divifion only. As in this Example.
If a Silver Tankard weighing 21 Ounces, coft 5 l. 19:. What is that an Ounce?

Thus $21 \mathrm{oz} .: 5 \mathrm{l} .19 \mathrm{~s} .=119 \mathrm{s}:.: 1: 5 \mathrm{~s} .8 \mathrm{~d}$. the Anfwer.
That is 2 I ) $119\left(=5 \mathrm{~s} \cdot \frac{14}{2}=5 \mathrm{s}\right.$.8 d .
The Proof of all Queftions in the Rule of Three Direct, may be eafly conceived from what hath been already faid; viz. That the Product of the firt and fourth Terms, mult always be equal to the Product of the fecond and third Terms.

Or otherwife, by varying the Queftion, as in the fecond, third, fourth, and fifth Queftions.

I fhall conclude this Section with inferting a few Queftions and their Anfwers; leaving their Work for the Learner's Practice.

Quef. I. What will the Carriage of if C. 3 grs. in lb. come to, at the Rate of 7 s. the Hundred?

Anfwer 6l. 4 s. II $\frac{1}{4} d$.
2uef. 2. If 61.4 s. II $\frac{1}{4} \mathrm{~d}$. be paid for the Carriage of $17 C$. 3 grs. 11 lb ; What was paid for the Carriage of 1 lb ?

Anfwer 3 Farthings.
2uef. 3. A Grocer bought 3 C. 1 qr. 14 lb . Weight of Cloves, at the Rate of $2 \mathrm{s}$.4 d . per Pound, and fold them for 52 l . I4s. Whether did he gain or lofe by the Bargain, and how much? Anfwer, he gained $8 l$. 12 s .

2uef. 4. A Draper bought of a Merchant eight Packs of Coth; every Pack had four Parcels in it ; and each Parcel contained ten Pieces; every Piece was Twenty-fix Yards; he gave after the Rate of four Pounds fixteen Shillings for 6 Yards. What came the eight Packs to, and what were they worth per Yard?

Anfw. They came to 6656 . And were worth 16 s. per Yard.
2uef. 5. A Merchant bought 436 Yards of Broad Cloth for $8 \mathrm{s}$.6 d . per Yard; and fold it again for 10 s .4 d . per Yard. What did he gain by the 436 rards?

Anfw. he gained $39 \mathrm{l} .19 \mathrm{s} .4 d_{\text {p }}$

2ucf. 6: A Goldfinith bought a Wedge of Gold, which weighed 14 lb .3 oz .8 pw . for 514 l .4 s . What did he pay per Ounce? Anfw. 3l. per Ounce.
2uef. 7. What will 48 oz. 17 pw. 20 Grains of Silver Plate come to, at the Rate of 5 s .6 d . per Ounce?

$$
\text { Anfw. } 13 \text { l. Is. } 10 \frac{3}{4} \mathrm{~d} .
$$

2uef. 8. If in four Weeks one fpend 13 s. 4 d. How long will 531. 6s. laft at that Rate?

$$
\text { Anfw. } 6 \text { Years, } 47 \text { Days, } 2 \text { Hours, }{ }_{2}^{\prime} 4 .
$$

2uef. 9. What will the one eighth Part of a Ship be worth, when the half is valued at 1015 l. 10 s .

Anfw. 253 l. 17 s. 6 d.
Quef. ro. The Sun is faid to perform one entire Revolution, (or 360 Degress) in the Space of 365 Days, 5 Hours, 48 Minutes, and 57 Seconds of Time, called a Tropical or Solar Year ; How much doth it move in one Day ?

2uef. II. If $\frac{5}{8}$ of a Yard of Velvet coff $\frac{2}{3}$ of a Pound Sterling, What will $\frac{2}{56}$ of $a$ Yard coft of the fame Velvet at that Rate ?

$$
\text { Anfw. } \frac{16}{240}=1 s .4 \mathrm{~d} .
$$

2uef. 12. Suppofe 21 . and $\frac{3}{3}$ of $\frac{1}{3}$ of a Pound Sterling will buy 3 Yards and $\frac{2}{3}$ of $\frac{3}{5}$ of a Yard of Cloth, How much will $\frac{3}{4}$ of a Yard coft at that Rate?

$$
\text { Anfw: } \frac{2255}{4896} \text { of a Pound }=9 \text { s. } 4 \frac{1}{2} d \text {. }
$$

Sect. 2. Of Recipzocal ppopoztion ; ufually called The Rule of Three Inverfe.

$R$Eciprocal Proportion is, when of four Numbers the third (viz. . that which moves the Queftion) beareth the fame Ratio to the firft: As the fecond does to the fourth.

Therefore, the lefs the third Term is, in refpect to the firf; the greater will the fourth Term be, in refpect to the fecond.

$$
' E X A M P L E
$$

If fixteen Men can do a Piece of Work in fix Days; How many Days muft eight Men require to do the fame Work, at the fame Rate of working ?

Here it is plain that eight Men muft needs have more Time than 16 Men to do the fame Work. Confequently the greater
the third Term is, in refpect to the firft, the leffer will the fourth Term be, in refpect to the fecond.

Example 2. If 8 Men can do a Piece of Work in 12 Days, How many Days will 16 Men require to do the fame Work? Hêre it is plain the fourth Term mult be lefs than the fecond, becaufe 16 Men undoubtedly can do the fame Work in lefs Time than 8 Men can.

From the fe Confiderations, compared with thofe in page 85. it will be eafy to perceive, whet her the Terms of any propofed Quefion are in DirecZ or Reciprocal Proportion.

For when, according to the true Meaning and $D_{\ell}$ fign of any Queftion in Proportion, More requires More, or Lefs requires Lefs, the Terms are in Direct Proportion; as in this laf Section.

But if More require Lefs, or Lefs require More (as above) then the Terms will be in Reciprocal Proportion.

The Manner of placing down the propofed Terms is the fame in both Rules, viz. The firft Term in the Suppofition muft be of the fame Kind and Denomination with the third Term which moves the Queftion; and the Term fought muft be of the fame Kind and Denomination with the fecond Term in the Suppofition. As in the two laft Examples.

Thus, is $\left\{\begin{array}{l}\text { Example } 1 . \\ \text { Example } 2 .\end{array}\right.$
Men Days Men Days
$16: 6:: 8:-$
$8: 12:: 16:-$

The Queftion being truly ftated, obferve this Theorem.
Theorem. $\left\{\begin{array}{c}\text { Multiply the firf and fecond Terms together, and di- } \\ \text { ver }\end{array}\right.$ Theorem. $\left\{\begin{array}{l}\text { vide the Producf by the third Term, the @uotient will } \\ \text { be the Anfwer required. }\end{array}\right.$ be the Anfwer required.

- Thus in the fecond Example $12 \times 8=96$.

Then 16) $96(=6$ Days the Anfwer required.
That is, 16 Men may do the fame Work in 6 Days, as 8 Men can do in 12 Days.

Now the Reafon of this Operation (and confequently of the Theorem) is grounded upon this Confideration; viz. If 8 Men require 12 Days to do the Work, it is plain that one Man would require 8 Times 12 Days $=96$ Days to do the fame Work; but if one Man can do it in 96 Days, moft certain 16 Men can do it in one 16th Part of that Time. Therefore 96 divided by 16 will give the Anfwer required, viz. 16) 96 ( 6 as berore, ® $^{\circ} c$.

2uef. 3. Suppofe 800 Soldiers were befieged in a Town, and their Victuals were computed to ferve them two Monhs (or 56 Days) How many of thofe Soldiers muft depart the Gar forn, that the fame Victuals may ferve the remaining Soldiers 5 Months.

The Queftion truly ftated will ftand
Thu Montbs Soldiers Montbs Soldiers
Thus, $2: 800: 5:-$

$$
\text { 5) } 1600(320 \text { : So many Soldiers may ftay in the }
$$ Garrifon.

Confequently, $800-3^{20}=480$ Soldiers that muft go out of the Garrifon, which is the Aniwer required. .

Quefion 4. $A$ borrowed of his Friend $B 250$ l. for fix Months, promifing to do him the like Kindnefs upon Demand: Some Time after $B$ defires $A$ to lend him 400 l . the Queftion is, how long $B$ muft keep the $400 \%$. to be fully fatisfied for his former Kindnefs to $A$.

Thus, 2501. : 6 Months : : 4001.: —

$$
\begin{aligned}
& \frac{6}{400) 1500(3 \text { Months. }} \\
& 12 \\
& { }_{28}^{3} \text { Days in one Month. } \\
& \text { 4) } 84(21 \text { Days. Anfw. } 3 \text { Months, } 21 \text { Days. }
\end{aligned}
$$

2ueftion 5. If a Penny White Loaf ought to weigh eight Ounces Troy Weight, when Wheat is fold for fix Shillings SixPence the Bufhel; what meft it weigh when Wheat is fold for four Shillings the Bufhel?

Thus 6 s. $6 d .=78 d: 80 \mathrm{~d} .:: 4$ s. $=48 \mathrm{~d} .:$ to the Anfwer. $\frac{8}{48)} \begin{aligned} & 624(130 z \\ & \frac{48}{144} \\ & \frac{144}{10)}\end{aligned}$
The Proof of this Inverfe Rule is eafily deduced from it's Operations; viz. The Product of the firft and fecond Terms, muft be equal to the Product of the third and fourth Terms.

Note, Any Queftion that falls under this Inverfe Rule or Reciprocal Proportion, may be fo ftated as to have it's Terms in Direat Proportion; by only changing the Places of the firft and third Terms in the Queftion, Thus,

2uefion 6. If a Field will feed eighteen Horles for feven Weeks: How long will it feed Forty-two Horles at the fame Rate of feeding?

Firft, 18 Horfes : 7 Weeks : : 42 Horfes : 3 Weeks.
Here the Terms are ftated inverfely, as before.
Otherwife thus, 42 Horfes: 7 Weeks :: 18 Horfes : 3 Weeks. Then $18 \times 7=126$. And $126 \div 42=3$ Weeks. The Anfwer required.

Sect. 3. Of Compaund 1Dapoztian; commonly called The Double Rule of Three.

$C^{0}$Ompound Proportion (as it is here meant) is, when there are five Numbers given to find out a fixth Proportional; and this is generally performed by a Double Pofition ; that is, by ftating. and working the Queftion at two Operations, either in Direct or Reciprocal Proportion, according as the Queftion requires.

And therefore it is called, The Doubla Golden Rule, or Double Rule of Three.

The Double Rule Direct is, when the fixth Term or Number fought, is found by two Operations, both of them in Direet Proportion.

Example 1. If a Hundred Pounds gain fix Pounds Intereft in twelve Months; how much will three Hundred Pounds gain in nine Months, atuche fame Rate?

Firft 100 l. : 61. : : $3001 .: 181$.
$\frac{6}{100) 1800(18} \%\left\{\begin{array}{l}\text { The Interef of } 3001 . \\ \text { for twelve Months. }\end{array}\right.$
Monsics Montbs
Then, $12: 181 .:: 9: 13 l .10$ s. $\frac{9}{12) 162(13} l .10$ s. The Anfwer required.

Ifuppore the Learner will eafily conceive the Reafon of there two Operations. For, firft it is plain by Direct Proportion, that if $100 \%$ gain $6 \%$ in twelve Months, 300 \% will gain 18 . in the fame Time, and at the fame Rate.

Chap. 7.
And by the fame Rule it is plain, that if 12 Months will produce or give 18 l . Intereft for 300 l . then 9 Months muft needs give $13 \frac{1}{2}$ for the fame Sum, viz. $300 \%$.

The Double Rule of Three Inverfe is, when the fixth Term, or Number fought, is found at two Operations (as before). But one of them requires an Anfwer in Reciprocal Proportion.

Quefion 2. If 6 Buhnels of Oats will ferve 4 Horfe 8 Days, How many Days will 21 Bufhels ferve 16 Horfes, at the fame Rate of feeding?

This Quefion being parted into two Pofitions, the firf will be thus:

If 6 Bufhels of Oats will ferve 4 Horfes 8 Days, How many Days will. 21 Bufhels ferve them?

Here it is plain, that 21 Bufhels will ferve them longer than 6 Bufhels ; therefore the firft Pofition falls in Direct Proportion.

6) 168 (28 Days

That is, if 6 Bufhels will Jerve 4 Horfes 8 Days, 21 Bufhels will ferve them 28 Days.

The next Pofition muft be to find how long the faid 21 Bufhels will ferve 16 Horfes at the fame Rate of feeding: it is plain, that 21 Bufhels cannot, ferve 16 Horfes fo many Days as they will ferve 4 Horfes; therefore this fecond Pofition falls in Reciprocal Proportion.

Thus, $4: 28:: 16: 7$ Horfes ${ }^{\text {Days }}$, the Anfwer required.
After the like manner any Queftion in the Double Rule of Three may be anfwered by two fingle Pofitions, if Care be taken in ftating them right, viz. Whether their Operation muft be performed by the fingle Rule Direct, or Inverfe.

But all Queftions in this Double Rule, where five Numbers are propofed to find a fixth, may more eafily and readily be anfwered by one general Theorem; which comprifeth both the Direct and Inverfe Rules; without confidering either of them being deduced from the fingle Operations before-going.

But firf you muft carefully note, that in all Queftions of this Nature, three of the five propoled Terms are always conditional
and fuppofed ; and that the other two move the Queftion. As for Inflance in Example I.

Viz. If 100 l . will gain 6 l . in i2 Months; thefe three Terms are only fuppofed or conditional. Then come the Queftion; What will 300 l . gain in 9 Months? Now, in Order to raife the general Theorem, let us fuppofe, inftead of Numbers, thefe Letters.
Viz. Let $\left\{\begin{array}{ll}P=100 . & \text { The Principal. } \\ T=12 . & \text { The Time. } \\ G=10 . & \text { The Gain. }\end{array}\right\} \begin{aligned} & \text { In the Suppofition } \\ & \text { of any propofed } \\ & \text { Queftion. }\end{aligned}$
And, $\left.\left\{\begin{array}{ll}p=300 . & \begin{array}{l}\text { The Principal. } \\ t=19 \text {. }\end{array} \\ g=13,5 \text {. The Time. }\end{array}\right\} \begin{array}{l}\text { The three Terms } \\ \text { wherein the Que- }\end{array}\right\} \begin{aligned} & \text { fion lies. }\end{aligned}$
The $P: G:: p: \frac{G P}{P}=\left\{\begin{array}{l}\text { The Product of the two Means di- } \\ \text { vided by the firft Extreme. }\end{array}\right.$作 $P$ vided by the firft Extreme.
That is, $100: 6:: 300: \frac{300 \times 6}{100}=18 .\left\{\begin{array}{l}\text { Which is the } \\ \text { firt Part of the } \\ \text { Queftion. }\end{array}\right.$
Then $T: \frac{G p}{P}:: t: g$
$V_{i z}$. $12: 18:: 9: 13,5 \quad\left\{\begin{array}{l}\text { the Queftion. }\end{array}\right.$
Ergo $T_{g}=\frac{G_{p t}}{P}\left\{\begin{array}{l}\text { That is, the Product of the Extremes } \\ \text { is equal to that of the Means. }\end{array}\right.$
Confequently, $T_{g} P=G p t$ is the Theorem.
This Theorem affords two Rules, by which all Queftions in this Double Rule of Three, or rather of five Numbers, may be sefolved; due Regard being had to the true placing down of the propofed Terms, which muft be thus:
Always place the three conditional Terms in this Order; let that Number which is the principal Caufe of Gain, Lofs, or Action, $E_{c} c$. (viz. P.) be put in the firf Place; that Number which denotes the Space of Time, or Diftance of Place, $\xi^{\circ} \%$. (viz. T.) be put in the fecond Place. And that Number which is the Gain, Lofs, or Action, छoc. (viz. G.) be put in the third Place. Now according to there Directions, the conditional Terms of the laft Queftion will ftand thus; P. T. G.

That done, place the other two Terms which move the Qued ation, underneath thofe of the fame Name,

Thus, $\left\{\begin{array}{l}P . T . G . \\ p, t .\end{array}\right.$

Chap. 7. Of lpzapoztion, \&c.

Then if the Blank or Term fought, fall under the third Place, as in this Queftion,

It will be $\left\{\frac{G p t}{T P}=g\right.$. Which gives this Rule.
$\left\{\begin{array}{l}\text { Multiply the three laft Terms together for a Dividend, }\end{array}\right.$
Rule I. $\{$ and the two firft together for a Divifor; the 2 uotient arifing from them witt be the $\sqrt{3} x$ th Term.

That is; in our propofed Example I.
Thus $6 \times 300 \times 9=16200$ the Dividend.
And $100 \times 12=1200$ the Divifor.
Then 1200) 16200 ( $133^{\frac{1}{2}}$ the Anfwer; as before.
But if the Blank or Term fought fall under the firft Place ${ }_{3}$ then

It will be $\left\{\frac{\tau_{g} P}{t G}=p\right.$.
Or if the Blank fall under the fecond Place,
It will be $\left\{\frac{\mathcal{T}_{g} P}{G p}=t\right.$. Either of thefe give this Rule.
Rule 2. $\left\{\begin{array}{l}\text { Multiply the fir } \ell, \text { fecond, and laft Terms together for }\end{array}\right.$ a Dividend, and the other two together for a Divifor; the Quotient arifing from them will be the fixth Term.
And becaufe our Example 2. falls under the Confideration both of Direct and Reciprocal Proportion, let it be here propofed again.

Viz. If 6 Buthels of Oats will ferve 4 Horfes 8 Days; how many Days will 21 Buhhels ferve 16 Horfes, Eoc.

If the Terms of this Queftion be placed down as before directed, they will ftand
Horfes. Days. Bu/hels.

Thus $\left\{\begin{array}{llll}4 & 8 & 8 & 6 \\ 16\end{array} \quad \begin{array}{lll}21\end{array}\right.$ Terms in the Suppofition。
Here the Blank falls under the fecond Place, therefore it muft be found by the fecond Rule.

Thus $4 \times 8 \times 21=672$ the Dividend.
And $16 \times 6=96$ the Divifor. Then 96) 672 (7 the Anfwer, as before.

2ueft. 3. What Principal or Stock will gain 20 \%. in 8 Months at 6 per Cent. per Annum?

$$
\begin{aligned}
& \begin{array}{c}
\text { Prin. } \\
100 . \\
\text { Time. } \\
\hline
\end{array} 2 . \quad 6 \text { Terms in the Suppofition. } \\
& \text { - } 820
\end{aligned}
$$

In this Queftion the Blank falls under the firft Place, therer fore it muft be found by the fecond Rule.

Thus $100 \times 12 \times 20=24000$ the Dividend.
And $\quad 8 \times 6=48$ the Divifor.
Then 48) 24000 ( $500 \%$. the Anfw. required.
The Proof of all Queftions in this Double Rule of five Numbers, is beft performed by varying the Queftion; viz. by ftating it in another Order, as in the laft Example: Thus,

If 100 l . gain 6 l . in 12 Months, what will 500 l . gain in 8 Months?

The Anfwer to this Queftion muft be 201 . if the Work of the laft Example be true.


$$
\begin{aligned}
& 500 \times 8 \times 6=24000 \text {. And } 100 \times 12=1200 \text {. } \\
& \text { Then 1200) } 24000\left(20 \% \text { the Anfwer, } 0^{\circ} \mathrm{c}\right. \text {. }
\end{aligned}
$$

2uef. 4. If two Men can do I2 Rods of Ditching in 6 Days, How many Rods may be done by 8 Men in 24 Days, at the fame Rate of working? Anfw. 192 Rods.
2uef. 5. If the Carriage of 5 C. 3 grs. Weight, 150 Miles, coft 3 l. 7 s .4 d . What muft be paid for the Carriage of ${ }_{7} \mathrm{C} .2$ qrs. ${ }_{25} \mathrm{lb}$. Weight, 64 Miles, at the fame Rate?

$$
\text { Anfw. } 1 \text { l. } 18 \text { s. } 7 \frac{1}{2} d .
$$

2uef.6. If 8 Men deferve 2l. Wages for 5 Days Work, How much will $3_{2}$ Men deferve for 24 Days, at the fame Rate?

$$
\text { Anfw. } 3^{8 l .8 s}
$$

2uef. 7. Suppofe a Hundred Pounds would defray the Expences of five Men for Twenty-two Weeks and fix Days, How long would tweive Men be in fpending of one Hundred and Fifty Pounds, at the fame Rate?

Anfw. I4 Weeks and 2 Days.

## C H A P. VIII.

Of Trading in Company, ufually called the Rule of Jellomitip; aljo Dartering, and EEcbanguins of Coins, \&c.

THE Rule of Fellowfhip is that by which the Accompts of feveral Partners trading in a Company, are fo adjufted or made up, that every Partner may have his juft Part of the Gain, or fuftain his juft Part of the Lofs; according to the Proportion or Share of Money he hath in the Joint-Stock: Now this falls under two Confiderations, called the Single and Double Rules of Fellowfhip.
Sect. 1. The Single Rule of Jellothith, viz. Tbat without Time.

$B^{Y}$Y the Single Rule of Fellow/hip is adjufted the Accompts of thofe Partners that put all their feveral and perhaps different Sums of Money, into a common Stock at one and the fame Time; and therefore it is ufually called the Rule of Fellow/hip without Time : Now all Queftions of this Nature are anfwered by fo many feveral Operations in the Rule of Three Direct, as there are Partners in the Stock.

For, as the Total Sum of Money in the Stock is in Proportion ta the whole Gain, or Lofs: So is every Man's particular Part of that Stock; to bis particular Share of that Gain, or Lofs.

Quefl. r. Three Partners, fuppofe $A, B$, and $C$, make à JointStock of $96 l$. in this manner.
$A$, puts in $24 \%$. $B$, puts in $32 \%$. and $C$, puts in $40 \%$. with this 961 . they trade and gain $12 \%$. It is required to find each Man's true Part of that Gain.

The Operation will ftand, thus
961.: 12l.: : $\left\{\begin{array}{l}24 l: 3 l .=A \text { 's } \\ 32 l .: 4 l . \text {.s } \\ 40 l .: 5 l .=A ' s\end{array}\right\}$ Part of the Gain. Proof $3 \%+4 \%+5 \%=12 l$. the whole Gain.
That is, if the Sum of each Man's particular Gain, amount to the whole Gain, the IVork is true; if not, fome Error is committed which muft be found out.

Note, Thefe Operations will be very much abbreviated, if you work them by Theorem 2. page 87. For here 96 is a common Antecedent, and $\mathbf{1 2}$ is the common Confequent in all the three Proportions,

Therefore $96: 12:: 1: 0,125$ a common Multiplicator.

$$
\text { Then }\left\{\begin{array}{l}
24 \\
32 \\
40
\end{array}\right\} \times 0,125=\left\{\begin{array}{l}
3 l . \\
4 l . \\
5 l .
\end{array}\right\} \text { for }\left\{\begin{array}{l}
A, \\
B, \\
C,
\end{array}\right\} \text { as before. }
$$

Now this Method is more readily performed than the other ${ }_{\text {F }}$ efpecially when the Partners are many; becaufe one Single Divifion ferves for all the Work.

2uef. 2. Three Merchants, $A, B$, and $C$, freight a Ship with 248 Tons of Wine: Thus, $A$, loaded 98 Ton, $B, 86$ Ton, and C, 64 Ton. By Extremity of Weather the Seamen were forced to caft or throw 93 Ton of it over-board. How much of this Lofs muft each Merchant fuftain?

Firft, $248: 93:: 1: 0,375$ the cammon Multiplier.

$$
\text { Then }\left\{\begin{array}{l}
98 \\
86 \\
64
\end{array}\right\} \times 0,375=\left\{\begin{array}{l}
36,75 \text { for } A \text { 's } \\
32,25 \text { for } B \text { 's } \\
24,00 \text { for } C \text { 's }
\end{array}\right\} \text { Lofs. }
$$

Now if the Queftion were to find how much of the remaining Wine that was raved, belongs to $A$, to $B$, and to $C$.

$$
\text { Then }\left\{\begin{array}{l}
98-36,75=6 \mathbf{1}, 25 \\
86-32,25=53,75 \\
64-24,00=40,00
\end{array}\right\} \text { belongs to }\left\{\begin{array}{l}
A \\
B . \\
C .
\end{array}\right.
$$

That is, $A$ ought to have 6 I Tons and 63 Gallons. $B$, ought to have 53 Tons and 189 Gallons. And $C$, ought to have 40 Tons of what was left.

2uef. 3, Suppofe fix Men, viz. $A, B, C, D, E$, and $F$, make 2. Joint-Stock of 2558 l.

Thus $\left\{\begin{array}{l}A \\ B \\ C \\ D \\ E \\ F\end{array}\right\}$ puts in $\left\{\begin{array}{c}\text { l. s. Decimals. } \\ 654 \cdot 10=654,50 \\ 543 \cdot 15=543,75 \\ 480,00=480,00 \\ 254 \cdot 10=254,50 \\ 365 \cdot 05=365,25 \\ 260,00=260,00\end{array}\right.$
The whole Stock - $255^{8} \cdot 00=255^{8,00}$ according to the Quefion.

With this Stock of $2558 l$. they Trade eighteen Months, and Gain 83 rl l. 7 s. It is required to find every Man's Part or Share of that Gain.

Note, Although the Time of Trading, viz. eighteen Months, be mentioned in the Quefion, yet it is no Way concerned in anfwering. of it; as you may obferve in the following Work.

Firf, $255^{8 l}$ l. : $83 \mathrm{r}, 35 \mathrm{l} .::: 1 \mathrm{l} .: 0,325$ Decimal Parts.
Confequently, 1 l. : 0,325:: 654,5:212,7125. That is,


I have omitted refolving this Queftion according to the ufual Method (as before directed) of finding every Man's particular Part of the Gain by the Golden Rule, as in the firft Work of Example I. leaving that for the Learner's Practice.

Sect. 2. The Đoulle Inule of fellowflip; or that with Time.

THIS is ufually called the Double Rule of Fellow/hip, becaure every particular Man's Money is to be confidered with Relation to the Time of it's Continuance in the Joint-Stock.

Queftion 1. $A$, and $B$, join in Partnerfhip upon there Terms, viz. $A$, agrees to lay down 1001 . and to employ it in Trade 3 Months: Then $B$, is to lay down his 100 l. and with the whole Stock of 200 l . they are to trade 3 Months more. Now at the End of that Time, they find their whole Gain to be 21 l. It is required to know what each Man's Part of the Gain ought to be, according to his Stock, and the Time of employing it.

Here it is but reafonable to conclude, that $A$, ought to gain more than B , notwithftanding their Stocks of Money are equal; becaufe $A$ employed his Money a longer Time than $B$.

Now for folving of this Queftion, let us fuppofe $A$ 's 1001 . employed the firft 3 Months to gain $Z=$ a Sum as yet unknown; then it muft gain 2 Z in 6 Months; and to find what $B$, muft gain, it will be,

$$
\begin{aligned}
& \text { 2. Montbs. } \\
& \begin{array}{c}
100 \cdot 6.2 Z=A^{\prime \prime} \text { Gain } \\
\left.100 \cdot 3 \cdot \begin{array}{c}
\text { to } B^{\prime} \text { Gain }
\end{array}\right\} \text { per Rule 1. Page } \\
\text { Ergo } \frac{100 \times 3 \times 2 Z}{100 \times 6}=B^{\prime} \text { 's Gain. }
\end{array}
\end{aligned}
$$

But $A$ 's Gain added to $B$ 's Gain muft $=2 \mathrm{I} l$. the whole Gain by the Queftion.

Therefore $2 Z+\frac{100 \times 3 \times 2 Z}{100 \times 6}=21 l$.
That is, $100 \times 6 \times 2 Z+100 \times 3 \times 2 Z=21 \times 100 \times 6$.
Which contracted is, $900 \times 2 Z=21 \times 600$.
Confequently, $2 Z=\frac{21 \times 600}{900}$, which gives the following $A-$
nalogy.
Viz. $900: 21:: 600: 2 Z=14$. for A's Gain. And $900: 21:: 100 \times 3=300: 7 l$. for E's Gain.

Now this way of arguing hath not only refolved the prefent Queftion, but it alfo affords (and demonftrates) a general Rule for refolving all Queftions of this Nature, be the Partners never fo many.

Rule.
$\left\{\begin{array}{l}\text { Multiply every particular Man's Stock, with the Time it } \\ \text { is employed, then it will be, as the Sum of all thofe } \\ \text { Products; is to the whole Gain (or Lofs). So is every } \\ \text { one of thofe Products: to it's proportional Part of that } \\ \text { whole Gain (or Lofs). }\end{array}\right.$

Queftion 2. Three Merchants $A, B$, and $C$, enter into Partnerfhip, thus; $A$ puts into the Stock 65 l . for 8 Months; $B$ puts in $78 \%$ for 12 Months; and $C$ puts in $84 \%$. for 6 Months. With thefe they traffick, and gain $166 \%$. 12 s . It is required to find each Man's Share of the Gain, proportionable to the Stock and Time of employing it.

Then, according to the Rule, the feveral Proportions will stand thus,

$$
1960: 166,6::\left\{\begin{array}{l}
520: 44,20=44 l . \text { 4s.od. } \\
936: 79,56=79 l . \text { ins. } 2 \frac{1}{2} d . \\
504: 42,84=42 l . \text { I } 6 \text { s. } 9 \frac{\frac{1}{2}}{} d .
\end{array}\right\} \text { for }\left\{\begin{array}{l}
A . \\
B . \\
C .
\end{array}\right.
$$

$$
\text { The whole Gain }=100 \mathrm{l} .12 \mathrm{s.0d}
$$

Or you may work as in fome of the former Examples, viz. by finding the proportional Part of the Gain due to one Pound, $\xi^{\circ} c$.

Thus $1960: 166,6:: 1: 0,085$ the common Multiplier. Then $\left\{\begin{array}{l}520 \\ 936 \\ 504\end{array}\right\} \times 0,085=\left\{\begin{array}{l}44,2 \\ 79,56 \\ 42,84\end{array}\right\}$ for $\left\{\begin{array}{l}A . \\ B . \\ C .\end{array}\right\} \sigma^{\circ} c$. As before.

2uefion 3. Six Merchants, viz. $A, B, C, D, E$, and $F$, enter into Partnerfhip, and compofe a Joint-Stock in this manner;


They traffick, and gain 258 l . $18 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. It is required to find every Man's Share of the Gain, according to the Stock and Time it was employed.

The feveral Stocks of Money, and their refpective Times being firft brought into Decimals, and then multiplied together, will produce thefe following Products.
$\left.\begin{array}{l}\text { A's } \\
B^{\prime} \text { 's } \\
C \text { 's } \\
\text { D's } \\
\text { E's } \\
\text { F's }\end{array}\right\}$ Stock \(\left\{\begin{array}{c}l. Months. <br>
64,50 \times 4,50 <br>
78,75 \times 6,00 <br>
100,00 \times 8,25 <br>
80,50 \times 12,00 <br>
74,6 \times 9,50 <br>

125,15 \times 7,00\end{array}\right\}\) The Time it was | employed $=$ |
| :---: |
| 290,25 |
| 472,50 |
| 825,00 |
| 966,00 |
| 708,70 |
| $880,2,5$ |

$$
\text { The Sum of thofe Products }=4142,70
$$

Then

Then if you work by the common Way; it will be $4142,7: 258,91875:: 290,25: 18,140625=18 l$. 2 s. $9^{\frac{3}{4}} d$. for $A$ 's part of the Gain; and fo on for the reft.

But if you work by the eafieft Way, viz. by finding the proportional Part of the Gain due to one Pound.

Thus $4142,7: 258,91875:: 1: 0,0625$.
$\left.\begin{array}{l}\text { Then } \\ 290,25 \\ 472,50 \\ 825,00 \\ 966,00 \\ 708,70 \\ 880,25\end{array}\right\} \times 0,0625=\left\{\begin{array}{l}1 \\ 2 \\ 5 \\ 6 \\ 4 \\ 5\end{array}\right.$

$$
\text { l. s. } \quad d .
$$

The whole Gain $=258.18 .04^{\frac{1}{2}}$

There few Examples being well underftood, are fufficient to thew the whole Bufinefs of Fellowfhip, छ$c$.

## Sect. 3. Of 2 battering.

WHEN Merchants, or Tradefmen, exchange one Commodity for another, it is called Bartering; and the only Difficulty in this way of dealing, lies in duly proportioning the Commodities to be exchanged, fo as that neither Party may fuftain Lofs.

Queftion I. Two Merchants, $A$, and $B$, Barter; $A$ would exchange 5 C. 3 qrs. 14 pound of Pepper, which is worth $3 l .10$ s. per $C$. with $B$ for Cotton, worth $10 d$. per pound weight; how much Cotton muft $B$ give to $A$ for his Pepper?

Note, In order to the refolving of this 2uffion (and all other Queftions of this Nature) you muft firft find, by the Rule of Three (or otherwife) the true Value of that Commodity whofe quantity is given (which in this Queftion is Pepper). And then find how much of the other Commodity will amount to that Sum, at the Rate propojed.

$$
\left.\begin{array}{l}
\text { Firft } 5 \text { C. } 3 \text { qrs. } 14 \mathrm{lb} .=5,875 \\
\text { And } 3 l .10 \text { s. } 0 \mathrm{~d} .
\end{array}\right\} \text { in Decimals. }
$$

Then $1: 3,5:: 5,875: 20,5625=20 l$. Ins. 3 d. the true Value of the Pepper.

Next, it is eafy to conceive, that $A$ ought to have as much Cotton at 10 d. per Pound, as will amount to 20 l . II s. $3^{\mathrm{d}}$. which may be thus found;
$10 d_{0}: 1 \mathrm{lb} .:: 20 \mathrm{l} .11 \mathrm{~s} .3 \mathrm{~d}_{1}=4235 \mathrm{~d}_{0}: 493,5 \mathrm{lb}$.

Chap. 7. Rule of Jellowffip, \&c. 105

That is, $4 C$. $1 \mathrm{qr}, 17 \frac{1}{2}$ pound of Cotton. And fo much $B$ muft give to $A$ in exchange for his 5 C. 3 qrs. 14 pound of Pepper.

2uefion 2. Two Merchants $A$ and $B$ barter thus; $A$ hath 86 Yards of Broad Cloth worth 9 s. 2d. per Yard ready Money: but in Barter he will have ifs. per Yard. B hath Shalloon worth 2 s .1 d . per Yard ready Money; it is required to find how many Yards of the Shalloon $B$ muft give to $A$ for his Cloth, to make his Gain in the Barter equal to that of $A$ 's.

The Method of refolving this, and the like Queftions, differs a little from the laft Cafe; for in this you muft firft find what Advance $B$ ought to make per Yard upon his Shalloon, in proportion to what $A$ hath done upon a Yard of his Cloth.
Thus $\left\{\begin{array}{l}\text { s. d. d. s. d. s. d. d. s. d. }{ }^{\text {d. }} \text { d. } \\ 9.2=110: 11=132:: 2,1=25: 2 \cdot 6=30\end{array}\right.$
the advanced Price for a Yard of $B$ 's Shalloon. Then proceed as before in the laft Example.

Thus i Yard $:$ in s. $:: 86$ Yards : $946 \mathrm{~s} .=47 \mathrm{l} .6 \mathrm{~s}$. the advanced Value of all the Cloth.

Next, If 2 s .6 d . will buy one Yard of Shalloon, at it's advanced Price, how many Yards will 47 l. 6 s. buy.

Thus 2,5:1:: $946: 378,4$ Yards.
That is, $B$ muft give $378 \frac{2}{5}$ Yapds of his Shalloon to $A$, for his 86 Yards of Broad Cloth.

Thefe two Examples are fufficient to fhew the Learner, that the Method of bartering, or exchanging Commodities for Commodities, wholly depends upon a clear underftanding of the Golden Rule ; which indeed is fo called, becaufe of it's Univerfal Ufe.

## Sect. 4. Of extbanging Coimy.

EXchanging the Coins of one Country for thofe of another, is like the Bufinefs of bartering Commodities. That is, it confifts in finding what Sum of one Country Coin will be equal in Value to any propofed Sum of another Country Coin. And, in order to perform that, it will be very neceffary to have a true Account at all times of the juft Value of thofe Foreign Coins visich are to be exchanged, as they are compared in Value with our Englifb Coin.

I fay, at all times, becaufe the Par of Exchange (as the Merchants call it) differs almoft every Day from London to other Countries. That is, it rifes and falls, according as Money is plenty or fcarce ; or according to the Time allowed for Payment of the Money in Exchange, Eoc. $^{\circ}$.

Thofe that defire to be fully fatisfied in the common Values of Foreign Coins, Weights, Meafures, $\mathcal{E}^{\circ} c$. may find them in a Book called the Merchants Map of Commerce, which for Brevity fake I have omitted tranfcribing, and only collected thefe few of Coins.


Note, The Englifg generally reckon their Exchange with other Countries by Pence, viz. other Countries value their Crowns, Dollars, or Ducats, EF\%. by Englifh Pence. Except with fome Parts of the Low-Countries, with whom the Exchange is in Pounds Sterling.

Quef. 1. How many Dollars at 4s. 6d. per Dollar, may one have for 162l. 18 s .

| Chap. 8. | Rule of feellomitip, \&cc. |
| :---: | :---: |
|  | $18 \mathrm{~s} .=3258 \mathrm{~s}$. and 4 |

2uef. 2. How many Saragoffa Ducats, of 5 s. 6 d. the Ducat, may be had for 275 Bergonia Ducats, at 4. s. 4 d . the Piece?

$$
\text { Anfwer } 216 \text { and } 3 \text { s. } 8 \mathrm{~d} \text {. over. }
$$

Thus 5 s. $6 d .=66 d$. and 4 s. $4 d .=52 d$.
Then $275 \times 5^{2}=14300 \mathrm{~d} .=275$ Ducats.
Confequently 66) 14300 ( $216 \frac{2}{3}$ the Anfwer required.
2uef. 3. A Traveller would change 233 l . 16 s .8 d . Sterling Money; for Venice Ducats at 4 s. $9 \frac{1}{2}$ d. per Ducat; How many Ducats muft he have?

Anfwer 976 Ducats.
Thus 4 s. $9 \frac{1}{2} \mathrm{~d} .=57,5 \mathrm{~d}$. and 233 l . 16 s .8 d . $=56 \mathrm{I} 20 \mathrm{~d}$.
Then $57,5 d$ d) 56120 d . ( 976 the Anfwer required.
Quef. 4. A Cafhier hath received 759 Ducats, at 7 s. $6 d$. per Ducat; And 579 Dollars at 45.8 d. per Dollar: Which he would exchange for Flemifh Marks at 14 s. 3 d. per Piece: How many ought he to have?

Anfwer 589 Marks, and $15 d$. over.
For $7 \mathrm{~s} .6 \mathrm{~d} .=90 \mathrm{~d}$. and $4 \mathrm{~s} .8 \mathrm{~d} .=56 \mathrm{~d}$.
Then $\{759 \times 90=68310 \mathrm{~d}$. the Value of the Ducats. $579 \times 56=32424$ d. the Value of the Dollarsp their Sum $=\overline{100734 d}$.
And 14 s. 3 d. $=17 \mathrm{Id}$. the Flemi/h Mark in Pence.
Confequently 171) 100734 ( 589 छvc. the Anfwer required.
2uef. 5. A Bill of Exchange was accepted at London for the Payment of 400 l . Sterling, for the like Value delivered in Am fterdam, at 1 l. 13 s. 6 d. for 1 l. Sterling; How much money was delivered at $A \mathrm{~m}$ ferdam?

$$
\text { Anfwer. } 670 \text { l. Flemish. }
$$

For $1 \mathrm{l},=240 \mathrm{~d}$. and $1 \mathrm{l} .13 \mathrm{s} .6 \mathrm{~d} .=402 \mathrm{~d}$.
Then 240: $402:: 400: 670$ the Anfwer required.
2uef.6. When the Exchange from Antwerp to London is at 11. 4 s. 7 d. Flemifh, for 1 l. Sterling; How many Pounds Sterling mult be paid at London; to ballance 236 l . Flemi/h at Antwerp. Anfwer 192 l. Sterling.
Thus 1 l. 4 s. $7 \mathrm{~d} .=295 \mathrm{~d}$. and $1 \mathrm{ll} .=240 \mathrm{~d}$.
Then $295: 240:: 236: 19^{2}$ the Anfwer.

Quef. 7. A Merchant delivered at London 120l. Sterling to receive 147 l . Flemifh at Amferdam; How much was 1 l. Sterling valued at, in Flemifb Money?

Anfwer. 1l. 4 s. 6 d .
Thus $120: 147:: 240 \mathrm{~d} .: 294 \mathrm{~d} .=1 \mathrm{l} .4 \mathrm{s} .6 \mathrm{~d} . \mathrm{Ec}_{\mathrm{c}}$.
2uef. 8. A Factor hath fold Goods at Cadiz for 1468 Pieces of Eight, valued at $4: 6 \frac{1}{2} \mathrm{~d}$. Sterling per Piece; How much Sterling Money do thofe Pieces of Eight amount to?

Anfwer 333 l. $7^{\text {s. }} 2 \mathrm{~d}$.
Thus, if $1=54,5 \mathrm{~d}$. then $1468 \times 54,5=83006 \mathrm{~d} . \mathrm{E}^{\circ} c$.
2uef. 9. A Traveller would have an equal Number of Crowns at 5s. 6d. per Crown; and Dollars at 4s. 5d. per Piece; How many of each fort may he have for 309 l .8 s.?

Anfwer 624 of each.
Thus 309 l. $8 \mathrm{~s} .=74256 \mathrm{~d}$.
And 5 s. $6 d .+4 s .5 d .=119 \mathrm{~d}$.
Then 119) 74256 ( 624 the Anfwer required.
Quef. 10. Suppofe I would exchange 527l. i7s. 6 da. for Dollars at 4 s .6 d . a Piece, Ducats at 5 s. 8 d . a Piece, and Crowns at 6 s . Id. a Piece; and would have 2 Dollars for 1 Ducat, and 3 Dollars for 2 Crowns. How many of each fort muift I have? Anfwer 927 Dollars, $463 \frac{1}{2}$ Ducats, and 618 Crowns.

$$
\begin{aligned}
& \text { For }\left\{\begin{array}{l}
54 d .=1 \text { Dollar. } \\
68 d .=1 \text { Ducat. } \\
73 d .=1 \text { Crown. }
\end{array}\right\} \text { per Queftion. } \\
& \text { And } 1266 \mathrm{god}=527 l .17 s .6 \mathrm{~d} .
\end{aligned}
$$

Now if the Crowns, Dollars, and Ducats, were to be equal in Number; then $73+54+68$ muft have been the Divifor, by which 126690 muft have been divided, and the Quotient would have been the Anfwer to the Queftion. As in the laft Example.

But here inftead of their Sum, fuch Parts of them mult be taken as are affigned or limited by the Queftion; that fo the Number of fome one of them may be found.

And becaufe there muft be $\left\{\begin{array}{l}2 \text { Dollars for } 1 \text { Ducat, and } \\ 3 \text { Dollars for } 2 \text { Crowns, }\end{array}\right.$
Therefore it will be $\frac{x}{2}$ of a Ducat for one Dollar, and $\frac{2}{3}$ of a Crown for one Dollar.

Confequently, $54+\frac{688}{2}:+\frac{2}{3}$ of $73=136 \frac{2}{3}$, or $\frac{11^{\circ}}{3}$ will be the Divifor to find the Number of Dollars.

Thus $\mathbb{4}_{3}^{1}{ }^{\circ}$ ) 126690 ( 927 the Number of Dollars.

- Then $\frac{1}{2}$ of $927=463 \frac{1}{2}$ is the Number of Ducats.

And $\frac{2}{3}$ of $927=618$ is the Number of Crowns.
Or if you pleafe you may form Divifors to find either the Ducats or Crowns firft: For if it be 2 Dollars for I Ducat, and 3 Dollars for 2 Crowns, as before;

Then will 6 Dollars be for 3 Ducats, and 6 Dollars for 4 Crowns.

Therefore, $\left\{\begin{array}{l}\frac{2}{3} \text { of a Dollar } \\ \frac{3}{4} \text { of a Ducat }\end{array}\right\}$ will be for I Crown.
Confequently, $\frac{2}{3}$ of $54:+\frac{3}{4}$ of $68:+73=205$ will be the Divifor to find the Crowns firt, $\xi^{\circ} c$.

Quef. II. A Cafhier is to receive 5001 . He is offered Crowns at $6 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d}$. per Crown, which are worth but 6 s . Or he may have Dollars at $4 s .5 d$. the Piece, which are worth but 4 s .4 d . Which of thefe fhall he receive to have the leaft Lofs? And how much will he lofe in the Payment?

I $\left\{\begin{array}{l}\text { I Crown }=72 . \mathrm{d} . \\ \text { i Dollar }=5^{2 . d} .\end{array}\right\}$ according to their true Values.
$2\left\{\begin{array}{l}\text { I Crown }=73,5 \mathrm{~d} . \\ \text { I Dollar }=53,0 \mathrm{~d} .\end{array}\right\}$ the advanced Values.
Now to find which will be the leaft Lofs; find what the advanced Value of a Dollar ought to be in Proportion to that of $I$ Crown.

Thus $72: 73,5:: 52: 53,083$ छgc. But he may have Dollars at 53 d . per Piece, therefore the Payment in Dollars will be the leaft Lofs; viz. 53 is lefs than $53,083 \mathrm{Em}^{\circ}$.

Next, to find what the whole Lofs will be by receiving Dollars. Becaufe the 500 l . $=120000 \mathrm{~d}$. is advanced as much above the true Value, as 53 d . is above 52 d . Therefore fay, If 53 d . advance $1 d$. $=53 \mathrm{~d} .-52 \mathrm{~d}$.; what will 120000 d . advance? i.e.

$$
53 d_{0}: 1 d_{0}:: 120000 d_{1}: 2264 \frac{8}{53} d .=9 l_{0} 8 \text { s. } 4 \frac{8}{53} d_{0}=\text { the }
$$ Lofs.

Queft. 12. Suppofe I exchange $4 l .10 \mathrm{~s}$. 10 d . for 11 Crowns and 7 Dollars; and at another Time I have 4 Crowns and 3 Dollars for $1 l .15$ s. each being of the fame Value with the firt. What is the Value of a Crown, and of a Dollar?

## $\left.\begin{array}{l}\text { Firft II Crowns }+7 \text { Dollars }=1090 \mathrm{~d} . \\ \text { Second } 2 \text { Crowns }+3 \text { Dollars }=420 \mathrm{~d} .\end{array}\right\}$ by the Queftion.

Then in order to find the Value of a Crown, you muft caft off the Dollars by making them of the fame Number; Thus,

33 Crowns +21 Dollars $=3270 \mathrm{~d}$. the firft multipl. with 3.
28 Crowns +21 Dollars $=2940 \mathrm{~d}$. the fecond multipl. with 7.
Then 5 Crowns $=330 \mathrm{~d}$. being the Difference.
Confequently 5) $330\left(66 d .=5 \mathrm{~s} .6 \mathrm{~d}\right.$. is the Value of $I_{\text {Crown. }}$. And 4 Crowns $=264 \mathrm{~d}$.
Then will 3 Dollars $=420 \mathrm{~d} .-264 d .=156 d$.
Confequently 3) $15^{6}$ ( $52 \mathrm{~d} .=4 \mathrm{~s} .4 \mathrm{~d}$. the Value of 1 Dollar.

## C H A P. IX. Of atligation.

WHEN it is required to mix feveral Sorts of Ingredients together; as different forts of Corn, Wines, Wool, Spices, or Metals; or to compofe Medicines, $\mathcal{E}^{\circ}$ c. the Method of proportioning fuch Mixtures, is called the Rule of Alligation; and is divided into two Parts or Branches; called Medial and Alternate.

## Sect. 1. Of alligatian פĐedial.

Lligation Medial, is that by which the Mean Rate or Price of any Mixture is found, when the particular Quantities of the Mixtures and Rates are given; and is thus performed.

Firft find the Sum of all the Quantities propofed to be mixed? And alfo the Sum of all their particular Rates.

Then the Proportion will be,
Rule $\left\{\begin{array}{c}\text { As the Sum of all the Quantities : Is to the Sum of all their } \\ \text { Rates }:: \text { So is any Part of the Mixture: To the Mean }\end{array}\right.$ Rate or Price of that Part.

[^0]Chap. 8.
What is the Mean Rate or Price, it may be fold for a Bufhel, without Lofs or Gain?

This Queftion prepared as directed above, will ftand
 $\{12$ Bufhels of Rye at 3 s .6 d . each, comes to 504 d . $27=$ their Sum. $\quad$ And their total Value $=\overline{1404 d_{0}}$
Then 27 Bufhels : 1404 d. :: 1 Bufhel : 52 d . $=4$ s. 4 d . the Anfwer required.

Queff. 2. A Grocer mixeth 36 Pounds of Tobacco, worth 1s. 6 d. a Pound, with 12 Pounds of another fort at 2 s . a Pound, and 12 Pounds of a third fort at is. 10 d . the Pound. How may he fell the Mixture per Pound?
 $60=$ the Number of Pounds. Their Value $=\overline{1200}$
Then $60 \mathrm{lb}: 1200 \mathrm{~d} .:: 1 \mathrm{lb}: 20 \mathrm{~d} .=1 \mathrm{~s} .8 \mathrm{~d}$. the Anfwer required.

2uef. 3. A Vintner mixeth 3I Gallons and a half of Malaga Sack worth 7s. 6 d . the Gallon; with 18 Gallons of Canary at 6 s. 9 d . the Gallon; 13 Gallons and a half of Sherry at 5 s. the Gallon; and 27 Gallons of White Wine at 4 s. 3 d. the Gallon. It is required to find what one Gallon of this Mixture is worth.

$$
\begin{aligned}
& \text { Gal. s. d. Pence. }
\end{aligned}
$$

$$
\begin{aligned}
& 90=\text { the Number of Gall. Their Value }=6480
\end{aligned}
$$

Then $90: 6480:: 1: 7^{2} \mathbf{d}=6 \mathrm{~s}$. the Rate or Price of one Gallon, as was required.

The Proof of all Operations in thefe fort of Mixtures, is done by comparing the Value of all the Mixture (being fold at the Mean Rate) with the total Value of all the particular Quantities, fuppofing they had been fold at their refpective Rates unmixed; if thofe Sums are equah the Work is true.

## Sect. 2. Of allegation altetnate.

ALligation Alternate, is that by which the particular Quantities of every Ingredient concerned in any Mixture are found; when the particular Rates of every one of thofe Ingredients, and the mean Rate are given ; being (as it were) the Converfe to Alligation Medial; as will appear by the following Operations, which admit of three Cafes.

Cafe I. The Particular Rates of any Ingredients propofed to be mixed, and the Mean Rate of the whole Mixture being given. To find how much of each Ingredient is requifite to compofe the Mixture; when the whole Quantity, or any Part thereof, is not limited.

Quef. 1. How much Wheat at 5 s. the Bufhel, and Rye at 3 s. 6 d. the Bufhel, will compofe a Mixiture that may be fold for 4s. 4 d. the Bußbel?

Note, In all Queftions of this Nature, it will be convenient to place the Mean, Rate fo, as that it may be eafily compared with the Particular Rates, in order to find every one of their Differences from the Mean Rate, by Infpection only.

$$
\text { Thus, the Mean Rate }=5^{2} \mathrm{~d} .\left\{\begin{array}{l}
\text { Wheat } 60 \mathrm{~d} . \\
\text { Rye } 42 \mathrm{~d} .
\end{array}\right.
$$

Then take tbe feveral Differences between the Mean Rate, and the Particular Rates; Setting down thofe Differences alternately, and they will be the Quantities required.

Thus $52\left\{\begin{array}{l}60 \\ 42\end{array}\right\}\left\{\begin{array}{r}10=52-42 \\ 8=60-52\end{array}\right.$
That is $52-42=10$ for the Quantity of Wheat.
And $60-5^{2}=8$ for the Quantity of Rye, that will compofe the Mixture required.

The Proof by Alligation Medial.

* Add $\begin{aligned} 10 \text { Bufhels of Wheat at } 60 \mathrm{~d} \text {. per Bufhel } & =600 \mathrm{~d} \text {. } \\ 8 \text { Bufhels of Rye at } 42 \mathrm{~d} \text {. per Bufhel } & \equiv 33^{6 \mathrm{~d}} \text {. } \\ & =93^{6 \mathrm{~d}} .\end{aligned}$

Then $18: 936:: 1: 52 \mathrm{~d} .=4 \mathrm{~s} .4 \mathrm{~d}$. the Mean Rate.
Note, Although 10 and 8 do anfwer the Queftion, as plainly appears by the Proof, yet they are not the only two Numbers; for this Queftion, and all others of this kind, will admit of various Anfwers, and all whole Numbers; for any two Numbers that are in the fame Proportion to one another, as 10 is to 8 , will as truly anfwer the Queftion.

Chap. 9:
Viz. $10: 8::\left\{\begin{array}{r}5: \begin{array}{r}5 \\ 15 \\ 20 \\ 20 \\ 25 \\ 25\end{array} 120\end{array}\right\}$ छic. ad infinitum.
2uef. 2. A Grocer would mix three forts of Tobacco together, viz. One Sort of $18 \mathrm{~d} . \mathrm{per} \mathrm{lb}$. another Sort of 22 d . per lb . and a third Sort of 2 s . the lb . How much of each Sort muft he take, that the whole Mixture may be fold for 20 d . the Pound?

Having fet down the given Rates, as before, then find each of their Differences from the propofed Mean Rate, and place thofe Differences alternately. Thus,

Mean Rate $20\left\{\begin{array}{l}18 \\ 22 \\ 24\end{array}\right\}\left\{\begin{array}{l}4 \pm 2=24-20 \text { and } 22-20 \\ 2=20=18 \\ 2=20-18\end{array}\right.$
Thefe Differences, viz. 6.2.2 are the Quantities required.
 $10=$ the Number of Pounds. $\quad$ Their Value $=\overline{200 \mathrm{~d} .}$ Then 10) 200 ( 20 the Mean Rate.
Or indeed any three Numbers that hate the fame Ratio to one anorher as 6 and 2 have, will anfwẹr the Queffian.

That is, $6: 2::\left\{\begin{array}{l}9: 3 i \\ 12: 4 \\ 15: 5\end{array}\right\}$ छic.
But if only one of the three given Rates had been greater than the Meañ Rate ; as fuppofe r4. $d$. per Pound, 18 d. per Pound, and 24 d. per Pound, ind the Mean Rate 20 d . as before. Then their Differences muft have been placed,

Thus, $20\left\{\begin{array}{l}14 \\ 18 \\ 24\end{array}\right\}\left\{\begin{array}{l}4 \\ 4 \\ 6+2\end{array}\right\}$ Eic. as before.
Quef. 3. A Vintner would make a Mixture of Malaga, worth 7 s .6 d . per Gallon, with Canary at 6 s .9 d . per Gallon, Sherry at 5 s . per Gallon, and White Wine at 4 s .3 d . per. Gallon ; What Quantity of each Sort muft he take, that the Mixture may be fold for 6 s. per Gallon?

In all Queftions of this Kind, wherein it is required to mix four Things together, two of them having their Prices greater, . and two leffer than the mean Rate: you mult always alligate or
compare a greater and leffer Price with the mean Price, fetting down their Differences alternately, as in the firft Example of this Section.

$$
\text { Thus, Mean Rate }=72 d .\left\{\begin{array}{l}
\text { Malaga } 90 \mathrm{~d} . \\
\text { White 51d. }
\end{array}\right\}\left\{\begin{array}{l}
21=72-51 \\
\text { Sherry 6od. } \\
\text { Canary 81d. }
\end{array}\right\}\left\{\begin{array}{l}
90-72 \\
9=81-72 \\
12=72-60
\end{array}\right.
$$

Hence 21 Gallons of Malaga, 12 of Canary, 9 of Sherry, and 18 of White will compofe the Mixture required.

Either of thefe Mixtures equally anfwer the Queftion, which may be eafily tried as before in the laft, $\varepsilon^{\circ} c$.

Cafe II. The particular Rates of all the Ingredients propofed to be mixed, the Mean Rate of the whole Mixture, and any one of the Quantities to be mixed being given: Thence to find how much of every one of the other Ingredients is requifite to compofe the Mixture.

Note, This is ufually called Alligation Partial.
Quef. 4. How much Wheat at 5 s. the Bufhel, muft be mixed with 12 Bufhels of Rye at 3s. 6 d . a Bufhel; that the whole Mixture may be fold for 4 s. 4 d. the Buhhel?

In this Cafe you muft fet down all the particular Rates, with the Mean Rate, and find their Differences juft as before; without any regard had to the Quantity given.

Thus, Mean Rate 52 d . $\left\{\begin{array}{l}\text { Wheat } 60 \mathrm{~d} . \\ \text { Rye } 42 \mathrm{~d} .\end{array}\right\}\left\{\begin{array}{r}10 \\ 8\end{array}\right.$
Then $\left\{\begin{array}{l}\text { As the Quantity found by the Differences of the fame } \\ \text { Name with the Quantity given: Is to the Quantity given : } \\ \text { So is any of the other Quantities found by the Differences: } \\ \text { To the Quantity of it's Name.' }\end{array}\right.$
Thus $8: 2:: 10: 15$, the Quantity or Number of Bufhels of Wheat required.

2uef. 5. How much Malaga at 7s. 6 d. the Gallon, Sherry at 5 s . the Gallon, and White Wine at 4 s . $3^{\mathrm{d}}$. the Gallon, muit be mixed with 18 Gallons of Canary at 6 s .9 d . the Gallon; that the whole Mixture may be fold for 6 s, the Gallon?

Chap. 9. Of ligation, \&c.
The Terms being fut dowil, $\mathcal{E}^{\circ}$. as before, will ftand
Thus, Mean Rate 72d. $\left\{\begin{array}{l}\text { Malaga god. } \\ \text { White 5 id. }\end{array}\right\}\left\{\begin{array}{l}21 \\ 18\end{array}\right.$ $\left.\begin{array}{l}\begin{array}{l}\text { Sherry } \\ \text { Canary } \\ 81 \mathrm{~d} \\ \mathrm{~d}\end{array}\end{array}\right\}\left\{\begin{array}{r}9 \\ 12\end{array}\right.$

That is, $31 \frac{1}{2}$ Gallons of Malaga, 27 of WhiteWing, and $13^{\frac{\pi}{2}}$ of Sherry, being mixed with 18 Gallons of Canary, will make the Mixture required.

Or thus, $7^{2}\left\{\begin{array}{l}\text { Malaga } 90 \\ \text { Sherry 60 } \\ \text { Canary 81 } \\ \text { White 5I }\end{array}\right\}\left\{\begin{array}{c}12 \\ 18 \\ 21 \\ 9\end{array}\right.$
 Gallons.

Pence.

Then $51 \frac{\circ}{2 T}$ ) $3702 \frac{18}{2} \frac{8}{2}$ ( 72 d . $=6 \mathrm{~s}$. the Mean Rate.
Therefore the Quantities are as truly affigned here, as in the lat Work.

Cafe III. The particular Rates of all the Ingredients propofed to be mixed ; and the Sum of all their Quantities with the Mean Rate of that Sum being given; to find the particular Quantities of the Mixture.

This is called Alligation Total, and is thus performed.
Set down all the particular Rates, with the Mean Rate, and find their Differences, as before: add together all the Differences. into one Sum ;

Then $\left\{\begin{array}{l}\text { As the Sum of all the Differences: Is to the Sum of all } \\ \text { the Quantities given }:: \text { So is every particular Difference: } \\ \text { To it's particular Quantity. }\end{array}\right.$
Quef.6. Let it be required to mix Wheat at 5 s. the Bufhel, with Rye at zs. 6 d. the Bufhel ; fo that the whole Quantity may be 27 Bufhels, to be fold for 4 s. 4 d . a Bufhel; what Quantity of each mut be taken to make up the Mixture?

Mean Rate $52\left\{\begin{array}{l}\text { Wheat } 60 \mathrm{~d} . \\ \text { Rye } 42 \mathrm{~d} .\end{array}\right\}\left\{\begin{array}{l}10 \\ \frac{8}{18=}\end{array}\right.$ their Sum.
Then $18: 27::\left\{\begin{array}{r}10: 15 \\ 8: \\ :\end{array}\right\}$ the Quantities required.
Queftion 7. Suppofe it were required to mix Malaga at $7 \mathrm{~s} .6 \%$ the Gallon, with Canary at $6 s .9 \mathrm{~d}$. the Gallon; Sherry at 5 s. the Gallon, and White Wine at 4 s. 3 d . the Gallon; fo that the whole Mixture may be 90 Gallons; to be fold for 6 s. the Gallon: How much of each fort will compofe that Mixture?

Mean Rate $=72 \mathrm{~d} .\left\{\begin{array}{l}\text { Malaga 90 } \\ \text { White 51 }\end{array}\right\}\left\{\begin{array}{c}21 \\ 18 \\ \text { Canary 81 } \\ \text { Sherry 60 }\end{array}\right\}\left\{\begin{array}{c}9 \\ 12 \\ \frac{60}{60}=\text { their Sum. }\end{array}\right.$
Then $60: 90::\left\{\begin{array}{l}21: 31^{\frac{1}{2}} \\ 18: 27 \\ 9: 13^{\frac{1}{2}} \\ 12: 18\end{array}\right\}$ the Gallons of $\left\{\begin{array}{l}\text { Malaga. } \\ \text { WhiteWine. } \\ \text { Sherry. } \\ \text { Canary. }\end{array}\right.$
Or thus, $72\left\{\begin{array}{l}\text { Malaga 90 } \\ \text { Sherry 60 } \\ \text { Canary 8I } \\ \text { White 5I }\end{array}\right\}\left\{\begin{array}{c}12 \\ 18 \\ 2 \mathbf{I} \\ \frac{9}{60}=\text { their Sum. }\end{array}\right.$
Then $60: 90::\left\{\begin{array}{l}12: 18 \\ 28: 27 \\ 21: 31 \frac{1}{2} \\ 9: 13 \frac{x}{2}\end{array}\right\}$ Gallons of $\left\{\begin{array}{l}\text { Malaga. } \\ \text { Sherry. } \\ \text { Canary. } \\ \text { White Wine. }\end{array}\right.$
Either of thefe $W$ ays do equally anfwer the Queftion, as may be eafily tried by Alligation Medial. As before, $\xi^{\circ}$.

Note, The Work of thefe Proportions may be much Bortened (efpecially when there are many Ingredients to be mixed) if you obferve the fame Method as was propofed in the Rule of Fellowhhip, page 99, Evc.

I have made Ufe of the very fame Examples both in Alligation Medial, and Alternate, throughout the three Cafes; being, as I prefume, much better than if they had been different ones; becauie the Learner may (if he confiders them a little) eafily perceive,
the chief Difference of each Cafe in the Alternate Rule depends, $\mathrm{E}_{\mathrm{c}}$. Not but that I could have inferted many various Examples, as alfo the Manner of compofing Medicines, $\vartheta^{\circ} c$, which, for Brevity fake, I have omitted, and refer thofe that defire to fee into that Bufinels to Sir Fonas More's Aritbmetick, wherein he will find it largely handled. And fo I fhall conclude with Alligation Alternate, which altho' it gives true Anfwers to Queftions of that Kind, with fome little Variety, according as the Ingredients are more or lefs in Number; as afpears by the foregoing Examples; yet it will not give all the Anfwers fuch Queftions are capable of, nor perhaps thofe which fuit beft with the prefent Occafion: Nor can this Imperfection be remedied by common Aritbmetick; but by an Algebraick way of arguing it may; whereby all the poffible Anfiwers to any (ueftion may be clearly and eafily difcovered; as thall be fhewed further on in the Second Part.

## C HAP. X.

## Of SDetalg and their Specifick Gxaitiew, Eoc.

## Sect. i. Of ©old and Siluet.

PURE Gold, free from Mixture with other Metals, ufually called Fine Gold, is of fuch a Nature and Purity that it will endure the Fire without wafting, although it be kept continually melted: And therefore fome of the ancient Philofophers have fuppofed the Sun to be a Globe of liquid or melted Gold.

Silver having not the Purity of Gold, will not endure the Fire like it : Yet Fine Silver will wafte but a very little by being in the Fire any reafonable time; whereas Copper, Tin, Lead, $E^{\circ} c$. will not only wafte, but may be calcined or burnt to a Powder.

Both Gold and Silver in their Purity, are fo very flexible or foft (like new Lead, $\xi^{\circ}$ c.) that they are not fo ufeful either in Coin, or otherwife (except to beat in Leaf-Gold or Silver) as when they'are allay'd, or mixed and hardened with Copper or Brafs. And altho' moft Places differ more or lefs in the Quantity of fuch Allay, yet in England it is generally agreed on, that,

## Standard for ©olu.

22 Carats of Fine Gold, and 2 Carats of Copper, being melted together, thall be efteemed the true Standard for Gold Coin, Egc. (The French and Spanifh Gold being very near of the fame Standard.) That is, if any Quantity or Weight of Fine Gold, be divided into Twenty-four equal Parts, and 22 of thofe Parts be mixed with 2 of the like Parts of Copper; that Mixture is called Standard Gold.

Whence you may obferve, that a Caiat is not any certain Quantity or Weight, but $\frac{1}{27}$ part of any Quantity or Weight; and the Minters and Goldfmiths divide it into 4 equal Parts, which they call Grains of a Carat; alfo they fubdivide one of thofe Grains, into Halves, Quarters, $\varepsilon^{\circ} \mathrm{C}$.

## Standard for Silluet.

Eleven Ounces and Two Penny-weight of Fine Silver, and Eighteen Penny-weight of Copper being melted together, is efteemed the true Standard for Silver Coin, called Sterling Silver. And fo in Proportion for a greater or leffer Quantity; which is a lefs Proportion of Allay for Silver, than the other is for Gold.

Note, When either Silver or Gold is finer than Standard, it is called Better; if coarfer, it is called Worfe; and that Betternefs or Wiorfenefs, is reckond by Carats and Grains of a Carat in Gold, and by Penny-weights in Silver ; and is thus difcovered : The Goldfmitbs or Refners, \&c. take a fmall Quantity of fuch Gold as they intend to try (which they call making an $A \int a y$ ) and weigh it very exactly, then they put it into a Crucible, and melt it in a ftroug Fire, fo long, that if there be any Copper, or other Allay mixt with it, that Allay may be confumed or burnt away: When it is cold they weigh it very exactly again, and if it have loft nothing of it's firft Weight, they conclude it is Fine Gold, but if the Lofs be $\frac{1}{2+}$ Part, they call it ${ }_{23}$ Carats Fine, or one Carat better than Standard: If it have loft $\frac{2}{2} \frac{1}{4}$ Parts it is $22 \mathrm{Ca}-$ rats fine, or Standard: If $\frac{3}{27}$ Parts, it is faid to be 21 Carats fine, or rather one Carat worfe than Standard, and fo in Prop ortion as it happens to be better or worfe.

In the fame Manner they make their Aflay on Silver, only they compute it's Lofs by Penny-weights, $\mathcal{E}^{\circ} c$.

The Author of the Prefent State of England, mentioned before (fage 32.) fays,

- That

Chap. io. Of GBetaim, Geantiey, \&c.

[^1]Many pretty Queftions may be ftarted concerning the Finenefs of Gold and Silver, Eoc.

$$
E X A M P L E
$$

If an Ingot of Silver weighing 787 Oz . 14 Pwt. 6 Grains, be II $O z .6$ Pwt. fine; How much fine Silver is there in it, and what amounts it to, at $5 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d}$. the Ounce?

This Ingot is better than Standard by $4 P$ wt. For in Oz. ${ }_{2} P_{w t}=222 \mathrm{Pwt}$. the fine Silver in 12 Oz . of Standard. But ir Oz . 6 Pw . $=226 \mathrm{Pw}$. the fine Silver in 12 Oz . according to the Queftion.

Firft 787 Oz. 14 Pwt. 6 Grains $=378102$ Grains.
And 12 Ounces $=240$ Pwt.
Then, As 240:226::378102:356046 $\frac{1}{20}=741$ Oz. ${ }_{5}{ }_{5}$ Pwt. $6 \frac{1}{2} \frac{1}{20}$ Grains the fine Silver in that Ingot.

Which at $5 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d}$. the Ounce, amounts to 190 l. is. 6 d . and near a Half-penny.

$$
E X A M P L E
$$

If an Ingot of Gold weighing $1_{15} \mathrm{Oz}_{1}{ }_{13}$ Pwt. 18 Grains; be $\frac{x^{4}}{4}$ of a Grain worfe than Standard: How much Standard Guld is there in it, and what comes it to at 3 l .11 s . an Ounce?

Firft ${ }_{115} \mathrm{Oz}_{1}{ }_{3}$ Pwt. 18 Grains $=55530$ Grains Troy.
Then 24) 55530 (2313,75 $=$ a Carat of that Quantity. And 4) 2313,75 ( $578,4375=$ a Grain of that Carat.
Confequently 4) 578,4375 ( $144,609375=\frac{5}{4}$ of a Grain.
Again, $2313,75 \times 22=50902,5$ ought to be the fine Gold in that Ingot, if it had been Standard:

But $50902,5-144,609375=50757,890625$ is the Quantity of find Gold according to the Queftion. Therefore 509025: $50757,890625:: 55530: 55372,244$ E'c. Grains $=115$ Oz. ${ }_{7}$ Pwt. $4,244 \mathrm{E}^{\circ} \mathrm{c}$. Grains Troy, being the Quantity of Standard Gold in that Ingot, as was required.

Next for the Value of it at $3 l$. 1 s. per Ounce; $10 z=480$ Grains; and 3 l . I1s. $=7 \mathrm{Is}$. Confequently $480: 71:$ : 55372,244 E'c. $^{\circ}: 8190,4777 \sigma^{\circ} c_{0}=409$ l. 10s. $5^{\frac{3}{4}} \mathrm{~d}$. very near; being the Value of that Ingot, as was required.

Or the laft Queftion may be otherwife wrought thus; 115 Oz . ${ }_{13}$ Pwı. 18 Grains $=115,6875$. And $\frac{1}{4}$ of a Grain of a Carat is $\frac{1}{16}$ (viz. the $\frac{\frac{1}{4}}{}$ of $\frac{1}{4}$ ) Then $22-\frac{1}{16}=21 \frac{15}{1} \frac{1}{6}=21,9375$. Confequently $22: 21,9375:: 115,6875: 115,358842$ E\%c。 $=115$ Oz. 7 Prwt. 4,244 Grains, Scc. as before.

Next for the Value; as $\mathbf{I}: 3,55:: \mathbf{1 1 5}, 358842: 409,523,889$ $=409 \mathrm{l} .10 \mathrm{~s} .5 \frac{3}{4} \mathrm{~d}$. very near: as before.

## Sect. 2. The Suecifick ©iauity of ゆొetals, \&c.

1Take an Enquiry made about the different Gravities, or Weights of Metals, and other Bodies, to be (not only a Work of Curiofity, but alfo) of very good Ufe upon many Occafions. Therefore feveral Authors have given us fuch Proportions, or Difference of their Weights, as they are faid to have ane to another; fuppofing every one of them to be of the fame Magnitude or Bignefs. Some of which I thall here infert.
I. Henry Van Etten, in his Matbemetical Recreations, printed Anno 1633, fets down the Proportion of their Weights thus ; Gold 1875. Lead 1165. Silver 1040. Copper 910. Iron 810. Tin 750. Water 100.
2. One Aifled, in his Encyclopadia, printed Anno 1649, hath them thus: Gold 1875. Quickfilver 1500. Lead 1165. Silver 1040. Copper 910. Iron 806. Tin 750. Honey 150. Water 100. Oil 90. Thefe feem to be taken from thofe of Van Etten's, with fome Additions only,
3. The ingenious Mr Ougbtred, in his Circles of Proportions, printed Anno 1660, hath their Proportions (according to the Experiments of one Marinus Ghetaldi, in his Tract called Archimedes Promotus) thus: Gold 3990. Quickflver 2850. Lead 2415. Silver 2170. Brafs 1890. Iron 1680. Tin $1554^{\circ}$

Chap. 10. Of Metaly, ©bauticg, \&cc.
4. In the Philofophical Tranfactions, (Number 169 and 199) there is an Account of a great many Experiments of this Kind; from whence I collected thefe following, viz. Gold 18888. Mercury 14019. Lead 11343 . Silver 11087. Copper 8843. Hammered Brafs 8349. Caft Brafs 8100 . Steel 7852. Iron 7643. Tin 7321. Pump-water 1000.

Thefe laft Proportions being approved of and publifhed by Order of the Royal Society feem to be unqueftionably true: Neverthelefs, becaufe they differ fo much from the beforementioned (and thofe from one another) I have for my own Satisfaction made feveral Experiments of that Kind: And have (I prefume) obtained the Proportions of Weight that one Body bears to another of the fame Bulk or Magnitude, as nicely as the Nature of fuch Matter, which may be contracted or brought into a leffer Body (viz. either by Drying, or Hammering, or otherwife) will admit of; which are as follow :

|  |  | Ounces Troy. \|| Ounces Avoird. |
| :---: | :---: | :---: |
|  | Fine Gold, is | $10,359273=11,365602$ |
|  | Standard Gold | 9,962625 $=10,930422$ |
|  | Quickflver | $7,384411=8,10: 753$ |
|  | Lead - - | $5,984010=6,553885$ |
|  | Fine Silver | $5,850035=6,418324$ |
|  | Standard Silver - | $5,556769=6,095569$ |
|  | Rofe Copper - | $4,747121=5,208369$ |
|  | Plate Bra/s | $4,404273=4,832116$ |
|  | Caft Brafs | $4,272409=4,630300$ |
|  | Steel - | $4,142127=4,544505$ |
|  | Common Iron | 4,031361 $=4,422979$ |
| A Cubick | Block Tin | $3,861519=4,23663^{8}$ |
| Inch of | Fine Marble | 1,429411 $=1,568859$ |
|  | Common Glafs | 1,360441 $=1,493037$ |
|  | Alabafler | 0,988456 $=1,084477$ |
|  | Dry lvory - | $0,962083=1,055542$ |
|  | Dry Box-wood | $0,543282=0,596057$ |
|  | SealWater | $0,542742=0,594894$ |
|  | Common clearWater | $0,527458=0,578697$ |
|  | Red Wine - - - Proof Spirits of Brandy | $\begin{aligned} & 0,523766=0,574646 \\ & 0,489268=0,536796 \end{aligned}$ |
|  | Sound Dry Oak - - | $0,489008=0,536569$ |
|  | Linfeed Oil = | $0,491591=0,539345$ |
|  | Oil Olive | $0,481569=0,528350$ |

In this Table you have the Specifick Gravity or Weight of a Cubic Inch, of various forts of Bodies, both in Troy Ounces and Avoirdupois Ounces, and Decimal Parts of an Ounce, which I can affure you required more Charge, Care, and Trouble, to find out nicely, than I was at firft aware of.

Now from hence it will be eafy to determine the Weight of any propofed Quantity, of the fame Matter and Kind with thofe in the Table ; it's Solid Content being given in Cubic Inches. For it is plain, that if the Number of Cubic Inches contained in any given Quantity, be multiplied with the tabularWeight of one Inch, (of the fame Kind of Matter) the Product will be the Weight of that Quantity in Ounces, $\Xi^{\circ} \mathrm{C}$.

$$
E X A M P L E
$$

Suppofe it were required to find the Weight of a Piece of Marble, containing three Solid Feet, and 40 Cubic Inches.

Firft $1728 \times 3=5184$ the Cubic Inches in 3 Solid Feet.
And $5184+40=5224$ the Number of Cubic Inches in the Piece of Marble.

Then $5224 \times 1,42941 \mathrm{I}=7410,066624$ Ounces Troy.
Or $5224 \times 1,568859=8195,719416$ Ounces Avoirdupois.
The Weight of that Piece of Marble, in Ounces, $\varepsilon g^{\circ} c$. which is eafily brought into Pounds, $\mathcal{E}^{\circ}$. The like for any of the reft.

The Converfe of this Work is as eafy ; viz. if the Weight of any propofed Quantity be given, thence to find the Solid Content of that Quantity in Cubic Inches, $\mathcal{E V}^{\circ}$.

Thus, divide the given Weight of the propofed Quantity (it being firft reduced into Ounces, \&rc.), by the tabularWeight of one Inch (of the fame Kind of Matter), and the Quotient will be the Number of Cubic Inches contained in that Quantity.

Note, If you would find what Weight any Quantity of thofe Bodies mentioned in the Table will have, when it is immerfed or put into Water, you muft fubftract the Weight of an equal Quantity of Water (with that of the Body), from the Weight of the propofed Body (if it be heavier than Water), and there will remain the Weight required. As for Inftance,

A Cubic Inch of Lead $=5,984010$ A Cubic Inch of SeaW ater $\equiv 0,542742$ Onnces Troy, \&cc.

- their Difference is $=5,441268$ the Weight of a Cubic Inch of Lead in the Water, Esc.

C H A P.

## C H A P. XI. <br> Euolutiout, or Extracting the Raatg out of all Single 1 円ainety; by one Geometrical Method.

## S E C T. I.

EVolution is the Unravelling, or as it were the Unfolding and Refolving any propofed Power or Number, into the fame Parts of which it was compofed, or fuppofed to be made up. Now in order to perform that, it will be convenient to confider how thofe Powers are compofed, Es.

A Square Number is that which is equally equal; or which is contained under two equal Numbers. Euclid. 7. Def. 18. Thus the Square Number 4 is compofed of the two equal Numbers 2 and 2. viz. $2 \times 2=4$. Or the Square Number 9 is compofed of the two equal Numbers 3 and 3. viz. $3 \times 3=9$ : according to Euclid. That is, if any Number be multiplied into itfelf; that Product is called a Square Number.

A Cube is that Number which is equally equally equal, or which is containtd under three equal Numbers. Eucl. 7. Def.19. Thus the Cube Number 8 is compofed of the three equal Numbers 2 and 2 and 2. viz. $2 \times 2 \times 2=8, \mathcal{E}^{\circ} c$. That is, if any Number be multiplied into itfelf, and that Product be multiplied with the fame Number; the fecond Product is called a Cube Number.

Thefe two, viz. the Square and Cube Numbers, borrow their Names from Geometrical Extenfions or Figures; as from the three Signal Quantities mentioned in page 2. That is, a Root is reprefented by a time or £ior, having but one Dimenfion, viz. that of 至math only. The Square is a Plane or Figure of two Dimenfions, having equal 1 rngth and 1 breadth. The Cube is a Solid Bodv of three Dimentions; having equal Length, 1 Breadth, and Mhickmin: But beyond thefe three, Nature proceeds not, as to Loial Extenfion. That is, the Nature of Place or Space, admits no Room for other ways of Extenfion, than Length, Breadth, and Thicknefs. Neither is it puffible to form, or compofe any Figure or Body beyond that of a Solid.

And therefore all the fuperior Powers above the Cube or third Power; as the Biquadrat or fourth Power, the Surfolid or fifth Power, Esc. are beft explained and underftood by a Rank or Series of Numbers in Geometrical Proportion. For Inftance: Suppofe any Rank of Geometrical Proportionals, whofe firft Term and Ratio are the fame; and to them let there be affigned a Series
of Numbers in Arithmetical Progreffon, beginning with an Unit or $\mathbf{I}$, where common Difference is alfo $\mathbf{I}$, as in page 79.

```
Thus, \(\left\{\begin{array}{l}1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \text {. } 7 \text { Indices. } \\ 2\end{array}\right.\)
\(22 \cdot 4 \cdot 8 \cdot 16 \cdot 3^{2} \cdot 64,128\) छ'c. in \(\div\)
```

Then are thofe Numbers in $\div$ produced by a continued Multiplication of the firf Term or Root into itfelf; and thofe in Arithmetical Progreffion or 3 ndites, do thew what Degree or Power each Term in the Geometrical Proportion is of. For Example; In this Series of $\div 2$ is both the firft Term or Root, and common Ratio of the Series. Then $2 \times 2=4$ the fecond Term or Square; and $2 \times 2 \times 2=8$, or $4 \times 2=8$, the Cube or third Term; $2 \times 2 \times 2 \times 2=16_{2}$ or $8 \times 2=16$ the fourth Term or Biquadrat. And fo on for the yeft.

Note, This is called Involution, viz. When any Number is drazun into itfelf, and afterwards into that Product, \&xc. it is faid to be fo often involved into itfelf; and the Indices are the Exponents of their refpecive Powers fo involved.

And according to thefe Involutions, is formed the following Table of Powers; wherein the Root is only one fingle Figure.


This Table plainly fhews (by Infpection) any Power (under the Tenth) of all the nine Figures; and from thence may be taken the neareft Root of any Square, Cube, Biquadrat, Esic. of any Number whofe Root or Side is a fingle Figure.

But

But if the Root confifts of two, three, or more places of Figures, then it muft be found by piece-meal, or Figure after Figure, at feveral Operations.

The Extraction of all Roots, above the Square (viz. of the Cube, Biquadrat, Surfolid, $\varepsilon^{\circ} c$.) hath heretofore been a very tedious and troublefome Piece of Work: All which is now very much fhortened, and rendered eafy, as will appear further on.

When any Number is propofed to have it's Root extracted, the firft Work is to prepare it, by Points fet over (or under) their proper Figures; according as the given Power, whofe Root is fought doth require; and that is done by confidering the Index of the given Power, which for the Square is 2, for the Cube 3, for the Biquadrat is $4, \mathrm{E}_{\mathrm{c}} \mathrm{c}$. (as in the precedent Table) Then allow fo many Places of Figures in the given Power, for each fingle Figure of the Root, as it's Index denotes; always beginning thofe Points over the Place of Unity, and afcend towards the LeftHand if the given Number be Integers, and defcend towards the Right-Hand in Decimal Parts. As in thefe following.

Suppofe any given Number; as 75640387246 which I fhall all along hereafter call the Refolvend.

Then if it be required to extract any of the following Roots, it muft be pointed (according to the forementioned Confideration) in this manner:

| Viz. For the | Square Root Thus | 75640387246 |
| :---: | :---: | :---: |
|  | Cube Root | 75640387246 |
|  | Biquadrat Root | $75 \dot{6} 4038724 \dot{6}$ |
|  | Surfolid Root | $75640387246^{\circ}$ |

Or fuppofe the Number to be 0,674035982
Then for the $\begin{cases}\text { Square Root Thus } & 0,6740359820 \\ \text { Cube Root } & 0,674035982 \\ \text { Biquadrat Root } & 0,674035982000\end{cases}$
Now the Reafon of pointing the given Refolvend in this manner; viz. the allowing two Figures in the Square; three Figures in the Cube, and four Figures in the Biquadrat, $\delta^{\circ} c$. for one Figure in the Root, may be made evident feveral ways; but I think it is eafily conceived from the Table of fingle Powers, wherein you may obferve that all the Powers of the Figure 9
(which is but a fingle Figure) have the fame Number of Places of Figures, as the Index of thofe Powers denotes : 'Therefore fo many Places of Figures muft be taken or affigned for every fingle Figure in the Root. Confequently by thefe Points is known how many Places of Figures there will be in the Root, viz. So many Points as there are, fo many Figures there muft be in the Root, and whether they muft be Integers or Decimal Parts, is eafily determined by the refpective Places of the Points.

## Sect. 2. To Eettrad the quate Rant.

AND firft how to extract the Square Root, according to the common Method.
Having pointed the given Refolvend into Periods of two Figures as before directed ; then by the Table of Powers (or otherwife) find the greateft Square that is contained in the firf Period towards the Left-Hand (fetting down it's Root, like a Quotient Figure in Divifion) and fubftract that Square out of the faid Period of the Refolvend: To the Remainder bring down the next Period of Figures, for a Dividend, and double the Root of the firft Square for a Divifor ; enquiring how oft it may be had in that Dividend, fo as when the Quotient Figure is annexed to the Divifor, and that increafed Divifor multiplied with the fame Quotient Figure, the Product may be the greateft Number that can be taken out of that Dividend; which fubftract from the faid Dividend, and to the Remainder bring down the next Period of Figures, for another new Dividend: Then fee how often the laft increafed Divifor, can be had in the new Dividend (with the fame Caution as before, viz.), fo as that the Quotient Figure being annexed to the Divifor, and that increafed Divifor multiplied with the fame Quotient Figure, their Product may be the greateft Number that can be fubftracted from the new Dividend. (As before) And fo proceed on from Period to Period (viz. from Point to Point) in the very fame Manner, until all be finifhed.

An Example or two being well obferved will render the Work of forming the new Divifors, $\mathcal{E}^{\circ}$. more plain and eafy than can be expreffed in a Multitude of Words.

Example 1. Let it be required to extract the Square Root out of 572199960721 . This Refolvend being prepared or pointed as before directed, will ftand

Chap. 11.

Thus, 572199960721 ( 756439 the Root. $49=$ the greateft Square in 57.

1. Divifor 145) 82 I
2. Divifor $\frac{5}{1506)} \quad \frac{725}{9099}=145 \times 5$
3. Divifor $\frac{6}{15124)} \quad \frac{9036}{66396}=1506 \times 6$
4. Divifor $\frac{4}{151283)} \quad \frac{60496}{590007}=15124 \times 4$
5. Divifor $\frac{3}{1512869)} \quad \frac{453849}{1361582 i}=151283 \times 3$
$9 \quad 13615821=1512869 \times 9$
Proof $756439 \times 756439=572199960721$ the Refolvend.
Example 2. What is the Square Root of 1850701,764025 ?
Operation $\dot{1850701}, 7 \dot{7} 4025^{\circ}(1360,405$

$\{$ Hence 1360,405 is the $\{$ Root required.

Ex. 3. What is the Square Root of 0,06076225 Decimal Parts? Operation $\dot{0}, 0 \dot{0} 07622 \dot{5}^{(0,2465}$ the Root required.

$$
\frac{.04=, 2 \times, 2}{207}
$$



$$
\begin{aligned}
& \frac{176}{3162} \\
& \frac{2916}{24625} \\
& 24625 \\
& \hline 0)
\end{aligned}
$$

$$
\text { Proof }\left\{\begin{array}{l}
0,2465 \times 0,2465= \\
0,06076325 \text { the } \\
\text { Refolvend. }
\end{array}\right.
$$

> What

What is here done in whole Numbers, mixed Numbers, and Decimals, may alfo be done in Vulgar Fractions ; if you firt change the given Fraction into Decimals. (As in Sect. 5. p. 68.)

Example 4. Let it be required to extract the Square Root of $\frac{16}{2}{ }^{6}$. Firft $\frac{10}{2}=0,64$

Then 0,64 (,8 the Root required. $\frac{, 64}{(0)}$
In thefe four Examples the Refolvend hath been a perfect Square; and therefore the Root hath been extracted without leaving any Remainder: But it very often happens that the Refolvend is not a true Figurate Number, according to the propofed Power. That is, it is not a perfect Square, Cube, Biquadrat, $\mathcal{E}^{\circ} c$. and then fomething will remain after the Extraction hath been made throughout all the Points. Such Numbers are called Suro Numbers, and their Roots can never be truly found, but will become a continued Series, ad infinitum: If to the Remainder there be ftill annexed Cyphers according as the propofed Power requires, viz. by two's in the Square ; three's in the Cube, four's in the Biquadrat, $\vartheta^{\circ}$ c. And the Operations continued on as before.

Example 5. Suppofe it were required to extract the Square Root of 6968 .

| Operation | $6968\left(83,4745, E_{0} c_{0}\right.$ |
| :--- | :--- |
|  | 64 |
| $163)$ | 568 |
| $\frac{3}{1064)}$ | $\frac{489}{79,00}$ |
| $\frac{4}{16687)}$ | $\frac{6656}{124400}$ |
| $\frac{7}{166944)}$ | $\frac{116809}{759100}$ |
| $\frac{4}{1669485)}$ | $\frac{667776}{9132400}$ |
| $\frac{5}{1669490)}$ | $\frac{8347425}{784975} \xi_{c}$. |

Then the Root of any Surd Number may be continued on to what Exactnefs you pleafe, but cannot be truly found.

In my Compendium of Algebra, Chap. 9. I have propofed another Way of extracting the Square Root, and there given Examples of the Work; which to avoid Prolixity is thus;

Having

Chap. 11. Of Eettactimg Roaty, \&c.
Having pointed the given Refolvend, and taken the greateft Square to the firft Point from it, as before. Then divide the Remainder of the whole Refolvend by 2 (that is, half is) and point it a-new. (This I call a new Dividend) Then make the Root of the firft Square a Divifor, inquiring how oft it may be found in the new Dividend to the next figure forward, referving that Figure under the next Point for the half Square of the Quotient Figure. Which being found, multiply the Divifor with it, adding to that Product the Tens of the half Square if there be any, as in plain Divifion. Then annex the Quotient Figure to the laft Divifor for a new Divifor, with which proceed in all Refpects as with the laft Divifor; and fo on until all be finifhed.

Example 6. What is the Square Root of 2990667969
Operation 2990667969

- 25 (5 The firft fingle Root

2) 490667969 The Remainder to be divided by 2 .

Firf Root 5) 245333984,5 (54687
Divifor

$$
\frac{+4}{54} \frac{208}{3733}=5 \cdot \times 4:+\frac{1}{2} \text { the Square of } 4, \text { viz. } \frac{66}{2}=8 \text {. }
$$

Divifor
Divifor

| $\frac{3258}{47539}=54 \times 6:+\frac{1}{2}$ the Square of 6 |  |  |
| :---: | :---: | :---: |
|  |  |  |

Hence the Root is found to be 54687 , as was required.
All the Difficulty in this Method is only the true placing of the half Square of the Quotient Figure, when it happens to be an odd Number: In that Cafe you muft bring down one Figure more of the Dividend; viz. of the next Period; under which, place the odd 5 that will always arife from the half Square of an odd Number: As 7 whofe Square is 49 ; the Half of which is 24,5 to be placed as in the laft Operation of this Example.
N. B. When the Number of Figures in the Root of any Surd Number is limited; you need not proceed in extracting the whole Root as before; but only to one Figure more than balf the defigned Number of Figures; for the reft may be obtained by plain Divifion only:

Example 7. Suppofe it were required to extract the Square Root of 7 (a Surd Number) to have 12 Places of Figures in it.

$$
\begin{aligned}
& \text { 夕 }\left(2,64575^{1}\right. \text { Firft part of the Root. } \\
& \text { Remainder } \frac{4}{3} \text {. } \\
& \text { 2) } \\
& \begin{array}{c}
+, 6 \\
2,6)
\end{array} \quad \frac{1,38=2 \times, 6:+\frac{1}{2} \text { the Square of } 0,6=0,18}{1200^{\circ}} \\
& \frac{+, 04}{2,64} \quad \frac{1048}{152000} \\
& \frac{ \pm, 005}{2,645)} \quad \frac{132125}{1987500} \\
& \frac{+, 0007}{2,6457)} \\
& 1851745 \text {. } \\
& \begin{array}{r}
+, 00005 \\
\hline 2,64575)
\end{array} \\
& 13228625 . \\
& \begin{array}{l} 
\pm, 000001
\end{array} \frac{26457505}{8229995}
\end{aligned}
$$

Having thus got 7 of the 12 Figures required in the Root; the reft may be eafily found by the contract Way of Divifion propofed in page 68.

$$
\begin{aligned}
& \text { Thus 2,645751) } 8229995 \mid(2,64575131106 \\
& \text { … } \frac{7937253}{292742} \\
& \frac{264575}{28167} \\
& \begin{array}{r}
26457 \\
1710
\end{array} \\
& \frac{1097}{(13)}
\end{aligned}
$$

Hence I find the Root of 7 to be 2,64575131106 , as was required.

Thus you have two ways of extracting the Square Root, either of which may be practifed as every one likes beft.

## Sect. 3. To extract the Cube Raat.

THE Method I thall here propofe for extracting the Cube Root admits of two Cafes; both which are to be very well obferved. Having pointed the given Refolvend, (as before directed) viz. into Periods of three Figures; then feek a Cube Number by the Table of Powers (or otherwife) that comes neareft to the firft Period of the Refolvend, whether it be greater or lefs than that Period.

Cafe 1. If the Cube Number fo taken, be lefs than the firft
 ftract that Cube from the firft Period of the Refolvend.

Cafe 2. But if that Cube be greater than the firft Period of the Refolvend, call it's Root Mole than 7uf: And fubftract the Refolvend from that Cube, annexing Cyphers to it, that fo Subftraction may be made.

To the firft Root, whether it be lefs or more than juft, annex fo many Cyphers as there are remaining Points over the whole Numbers of the Refolvend, and multiply it with 3: Then making that Froduct a Divifor, by which you muft divide the Difference be$t$ ween the Refolvend and the forefaid Cube; that Quotient will be the Refolvend depreffed to a Square, and therefore muil be pointed as fuch, viz. into Periods of two Figures each. That being done, make the firft Root (without thofe Cyphers that were annexed to it) a Divifor, enquiring how oft it may be found in the firft Period of the new Refolvend (as before in extracting the Square Root) with this Confideration, that if the Root (now a Divifor) be lefs than juft, as in Cafe I. you muft annex the Quotient Figure to it, and then multiply the Root fo increafed, into the faid Quotient Figure; fetting down the Unit's Place of their Product under the pointed Figure of that Period, fubftracting it, as in Divifion. And fo on from one Period to another, as before.

But if the faid Root (now a Divifor) be more than juft, as in Cafe 2. Then you muft fubftrack the Quotient Figure from a Cy pher annexed, or fuppofed to be annexed, to the faid Divifor; multiplying the Root fo decreafed into the Quotient Figure ; fet$t^{\text {ing down their Product as before, Eֹc. An Example or two in }}$ $\mathrm{e}^{\text {ach }}$ Cafe will render the Work plain and eafy.

Note, Each Quotient Figure ought always to be twice added to the Divifor, if the Tabular Cube was taken lefs than juft, or twice fubAracted from it, if greater; viz. once before you multiply by it, and once with the next Quotient Figure: as will be bewn in the following Examples; which are therefore more exalt and concife than as done by the Author in all the former Editions of bis Work.

Ex.I. What is the Cube Root of 146363183 the given Refelvend, to be pointed thus $14636{ }^{\circ} 18 \dot{3}^{\circ}$ (the firft Root, lefs than juft. $\therefore 125=$ the neareft Cube to 146
$500 \times 3=1500$ ) $213^{6} 3183$ ( 14242,12 new Refolvend


2 Divifor 547)
14242,12 (527 the Root required.
$\frac{104}{384^{2}}$
$\frac{3.29}{13}$ the Remainder to be rejected,
Here the Root 527 is the true Root at the firft Operation, as may be eafily tried by involving it.

That is $527 \times 527 \times 527=146363183$ the given Refolvend. But if it had not been the true Root, then every thing that hath been here done riaft have been repeated; only inftead of the firft fingle Root (iz. 5) you muft have taken the increafed Root (viz. 527) and this call a fecond Operation; which would increafe the laft Root to nir : Places of Figures; viz, every Operation triples the Number of Pl es in the laft Root; as will appear further on.
N. B. It ien batime that four, five, and jometimes more Places of Figures may be taken into the Root: efpecially when the fecond Placa proves to be a Cypber. That is, when the fir $\beta$ Cube comes very near to the firf Period of the Refolvend.

$$
E X A M P L E
$$

What is the Cube Root of $6750782 \mathbf{F}^{2} 39$ ( 4000 Root lefs than Firt neareft Cube $=64 \quad$ [juf,
Root $4 0 0 0 \times 3 = 1 2 0 0 0 \longdiv { 3 5 0 7 8 2 4 2 3 9 . 6 2 9 2 , 3 1 8 , 6 8 : , }$
Firft Root 4)


In this Example I have taken fix Figures into the Roots, becaufe the fecond Place proved to be a Cypher. And in thefe fix the

Chap. II.
the Exce!s is not an Unit in the laft Place; for if there were made a fecond Operation, the Root would be $407 \mathrm{I}, 78$ E ${ }^{\circ}$ c. as may be eafily tried.

$$
E X A M P L E
$$

Let it be required to extract the Cube Root out of this Number; Viz. $97 \dot{6} 37 \dot{9} 60298 \dot{9} 07 \dot{396027 \dot{9} 63029 \dot{8} 890}$
The neareft Cube to 976 is 1000 whofe Root is 10 more than juft, it's Cube 1000000000000000000000000000000 - 976379602989073960279630298890 the Refolvend. Remains 23620397010926039720369701110 The firf Root $10000000000 \times 3=30000000000$ the Divifor.
Then 30000000000 ) 23620397010926039720369701110 ( $78734^{-}$ 6567030867990 for a new Refolvend.

If Root 10
1 Div. $\frac{-007}{993)} \quad 787346567030867990\left(\begin{array}{c}10000000000=\text { Ift Root. } \\ 00793648 \text { cc. fubftract. }\end{array}\right.$ 2 Div. $\frac{79}{9851)} \frac{6951}{92246} \quad \begin{array}{r}\text { Remains } 9920636000 \\ \text { to the Root true }\end{array}$ - 9388659 little by an Unit at the feventh, at 3 Div. $\overline{9^{8417)}} \overline{35875^{6}}$ st the firft Operation.
${ }_{4}$ Div. $\frac{-\frac{36}{984134)} \frac{295251}{6350570}}{}$
5 Div. $-\frac{64}{\substack{9841276 \\ \& c .}} \begin{gathered}\frac{5904804}{44576030} 8 \text { \&c. }\end{gathered}$
For a fecond Operation (if you require no more than ten Places of Figures true in the Root) you need only affume 9920000000; which being lefs than juft, proceed with as follows:

From the given Refolvend, $=976379602989073960279630298890$ Sub. the Cube of $9920000000=976191488000000000000000000000$

$$
\text { Remainder } 18811498907396 \text { \& } \mathrm{cc} .
$$

Then $3 \times 99^{2} \& \mathrm{c} .=2976$ \&c. $) 18811498907396$ \&c. $(632106818 \mathrm{~s}$ \&c. for a new Refolvend.

| 99200) |  |  |
| :---: | :---: | :---: |
| $+\frac{06}{99206)}$ | 6321068181 | $\begin{gathered} 9920000000 \text { the Root affumed, } \\ 637163,5 \text { add } \end{gathered}$ |
| 63 | 595236 | 9920637163,5 the Root true to |
| 992123) | 3087081 | the tenth Figure, and only |
| + 37 | 2976369 | too much by an Unit in the |
| 9921267) | 71071281 | eleventh, |
| + 78 cc . | 69448869 |  |
| 992127*) | 1622412 | * Here the Additions of the Quo- |
| .!.. | 992127 | tient Figure being of no Con- |
|  | 030285 | fequence, therefore the Divi- |
|  | $\underline{595276}$ | as in page 68. |
|  | $\begin{aligned} & 35009 \\ & 29763 \end{aligned}$ | as in pag 68. |
|  | 5240 |  |
|  | 4960 |  |
|  | 8 c . |  |

In the fame manner the Cube Roots of Decimal Parts; or of Vulgar Fraction's, being firft changed into Decimals; may be extracted.

## Sect. 4. To extract the LBiquaduat Root,

IN extracling the Biquadrat Root, or that of the Fourth Power; (and indeed the Roots of all even Powers) there are fome fmall Difficulties, not fo eafily expreffed and explained in a few Words, as they are by an Algebraick Theorem; (fuch as fhall be fhewed further on) I have therefore in this Place made choice of extracting fuch Roots by two feveral Extractions, and the rather, becaufe I prefume the Reader by this Time thoroughly acquainted with the Bufinefs of extracting the Square Roct, by which this may eafily be performed. Thus:

Firf, Extract the Square Root of the propofed Refolvend, then the Square Root of that firf Root will be the Biquadrat Root required.

[^2]Thus 4857532416
$-3^{6}=$ the greateft Square, whole Root is 6 . $125753^{2410}$ Remainder to be divided by 2.

Firs Root 6) $+\frac{9}{69)} \frac{5805}{4826}$.

$+\quad$

$$
-\frac{9}{6969} \quad \frac{626805}{418158}
$$

$$
\begin{array}{r}
418158 \\
\hline
\end{array}
$$

Then 69696

$\{$being the firft Root, whore Square Root must now be extracted. $-4$

29696 Remainder to be divided by 2.
First Root 2) 14848 ( 264 the Biquadrat Root as was required. $+\frac{6}{26)} \frac{13^{8}}{104^{8}}$
$+\frac{4}{264} \frac{1048}{(0)}$
This is fo eafy I need not infert any more Examples.

## Sect. 5. To extract the Gut folio Root.

HAVING pointed the given Refolvend according as it's Index denotes ; viz. into Periods of five Figures; feeking fuch a Surfold Number in the Table of Powers (or otherwife) as comes the neareft to the firft Period of the Refolvend, whether greater or lefs, and call it's refpective Root accordingly, viz. more than jut, or left than jut ; annexing fo many Cyphers to it, as there are remaining Periods of whole Numbers in the Refolvend ; as before in extracing the Cube Root: Then find the Difference between the Refolvend, and the Surfolid Number fo taken, by fubftracting the lifer from the greater (as before in the Cube). Next find the Cube of the aforefaid Surfolid Root with it's annexed Cyphers, (which you may also do by tire Table of Powers) and multiply that Cube with 5 the Index of the Surfolid, the Product mut be a Divifor, by which the Difference between the Refolvend and the Surfolid Number mut be divided; that fo it may be depreffed
to a Square (as before in the Cube) which muft be pointed into Pe riods of two Figures each, calling it the new Refolvend (as before). Then make the firft Root, without it's Cyphers, a Divifor, enquiring how oft it may be found in the firft Period of the new Refolvend, with this Confideration, if the Root (now a Divifor) be lefs than juft, you muft annex twice the Quotient Figure to it ; but if it be more than juft, you muft fubftract twice the Quotient Figure from a Cypher either annexed, or fuppofed to be annexed to that Divifor or Root, multiplying it fo increafed or diminifhed, with the faid Quotient Figure, fetting down their Product, E $0^{\circ}$. as before. An Example in each Cafe will render it plain and eafy.

Example I. Suppofe it be required to extract the Surfolid Root out of this Number 12309502009375.

## 12309502009375 the Refolvend pointed.

The neareft Surfolid Number to 1230 , the firft Period of the Refolvend, is 1024, whofe Root is 4 being lefs than juft.

Therefore 12309502009375

- $\frac{1024}{2069502009375}$ their Difference.

Next the Cube of 400 is 64000000 per Table, $\delta^{\circ} \%$. And $64000000 \times 5=320000000$ the Divifor.

Then 320000000 ) 2069502009375 (6497 E'c.
Firft Root
400
$\left.+2 \times 10=+\frac{20}{420}\right) \quad 6467$
$+20+2 \times 5=\frac{+30}{450} \quad \frac{42}{2267}\left(\begin{array}{c}400 \\ +215\end{array} \quad\right.$ Root true
2250
17 the Remainder to be rejected.
That is 415 is the Surfolid Root of the given Refolvend. As may be eafily tried by involving it to the fifth Power. Viz. $415 \times 415 \times 415 \times 415=12309502009375$ the given Refolvend.

Note, Here again the double Quotient Figure ought to be twice added or Jubftracted, in the fame Manner as the fingle one was directed for the Cube Root, page 131, and the Operation for the Surfolid Root in thefe two Examples is performed accordingly: contrary to what was heretofore done by the Author.

Example 2. What is the Surfolid Root of $23^{2} 7834559873$
The neareft Surfolid Number to 232 is 243 whofe Root is $\overline{3}$ being more than juft.

$$
\begin{aligned}
& \text { Therefore } 2430000000000 \\
& \text { - } 2327834559873 \\
& \text { Remains } 102165440127 \text { For a Dividend. }
\end{aligned}
$$

The Cube of 300 is 27000000 and $27000000 \times 5=135000000$ Then 135000000) 102165440127 ( 756,7810 new Refolvend.

Firf Root
300


Now the Reafon why this Root comes out to fo many Places of Figures at the firft Operation; is becaufe the firft Surfolid Number was fo near the Refolvend, $\varepsilon^{\circ} \mathrm{c}$. As before.

## Sect. 6. To extrait the Roat of the Squate cubed.

THIS may be eafily performed by two Extractions, according as it's Name denotes. Thus, firft extract the Square Root of the given Refolvend ; then extract the Cube Root of that Square Root, and it will be the Root required: That is, it will be the Root of the fixth Power. Or thus, firft extract the Cube Root of the Refolvend; then extract the Cube Root of that Cube Root, and it will be the Root required.

$$
E X A M P L E \text { I. }
$$

Let it be required to extract the Square cubed Root out of this Number 145220537353515625 the Refolvend.
Firft I extract the Square Root of this Refolvend, which I take to be the beft and eafieft Way.

Then 3) ${ }_{27610268676757812,5(381078 \mathbf{1 2 5}}$

$$
\begin{aligned}
& \frac{+8}{\left.3^{8}\right)} \quad \frac{272}{4102} . \\
& \begin{array}{ll}
+\quad 10 \\
\hline 3^{810)} & \frac{3805}{2976867} \\
+\quad 7 & 2667245 \\
\hline 38107)
\end{array} \\
& \frac{+\quad 8}{381078)} \quad \frac{3048592}{47634757} \text {. } \\
& \frac{+\quad 1}{3^{810781)}} \cdots \frac{38107805}{95^{269528}} \\
& \begin{array}{cc}
+\quad 2 \\
\begin{array}{c}
38107812)
\end{array} & \frac{76215622}{1905390612,5} \\
+\quad 5 & \frac{1905390612,5}{} \\
\hline 381078125 & (0)
\end{array}
\end{aligned}
$$

Having found the Square Root of the given Refolvend, I proceed to extract the Cube Root of that Square Root.

That is, of 381078125
$-343=$ the nearef Cube, it's Root is 700
Then $700 \times 3=2100) 38078125(18161$

Hence I find 725 to be the Square cubed Root required; as may eafily be tried by involving it to the fixth Power. That is, $725 \times 725 \times 725 \times 725 \times 725 \times 725$ will be found $=145^{22053} 3^{-}$ 7353515725 the given Refolvend.

## Sect. 7. To extlact the Raat of the feventh pownet:

HAving pointed the given Refolvend, as it's Index denotes, viz. into Periods of feven Figures, feek out fuch a Number of the feventh Power, by the Table of Powers, as comes neareft to the firft Period of the Refolvend; whether it be greater or leffer, calling it's refpective Root more than juft, or lefs than juft, annexing it's proper Number of Cyphers, $\delta^{\circ} \mathrm{c}$. as in the Cube and Surfolid.

Then find the Difference between the given Refolvend, and that Number of the feventh Power (found by the Table of Powers) by fubftracing the leffer from the greater.

Next find the Surfolid or fifth Power of that Root with it's annexed Cyphers (which you may alfo do by the Table of Powers) and multiply that Surfolid Number with 7, the Index of the given Refolvend; that Product muft be a Divifor, by which the furefaid Difference muft be divided, that fo it may be depreffed to a $S_{\text {guare }}$ to be pointed, $\mathcal{E}_{c}$. as before in the Cube, $\mathcal{E}^{\circ}$. than mal.... Root, without it's Cyphers, a Divifor ; new Refolvend (as before) only here you ....imatan, ws undif nith the Divifor with thrice the Quotient Fig... *

Example. What is the fecond Surfolid Root, or that of the feventh Power,
of 382986553955078125 the Refolvend pointed.
-2187 the neareft of the feventh Power.

$$
16428655395507 \delta 125 \text { their Difference. }
$$

The firft Root is 300 being lefs than juft, and the fifth Power of 300 is 243000000000 , which being multiplied with 7 is 17010000000000 for a Divifor, by which the aforefaid Difference muft be divided; which contracted may ftand thus,

$$
\text { ì701 }) 16428655(9658,23 \text { हْi. }
$$

| Firft Root 300 |  |
| :---: | :---: |
| $+3 \times 20=+\underline{60}$ | ( 300 |
| 1 Divifor $\quad$ 360) | $9658+25$ |
| $60+3 \times 05=+\underline{75}$ | $72 \quad 325=$ the true Root re- |
| 2 Divifor - 435) | $\frac{2458}{}$ [quired. |
|  | 2175 |
|  | 283 the Remainder to be rejected, <br> [as before. |

[^3]Hence I have found 325 to be the true Ront required, that is, the true Root of the feventh Power.

I think it needlefs to proceed farther; viz. to infert Examples of higher Powers. For if what is already done be well under!tood, it will be eafy to conceive how to proceed in extracting the Root of any fingle Power how high foever it be (for the M. ihad is general and alike in all Powers), due Regard being had io wieir Indices; and to the firft fingle Side or Root. That is, whether it be more, or lefs than juft, $E^{\circ} \mathrm{c}$.

Yet methinks I hear the young Learner fay, it is peffible ta follow the Directions and Examples, as they are here laid uown; but ftill here is not the Reafon why they are fo, and fo, performed ; and why there fhould be a Remainder left after the Root is found ; viz. when the given Refolvend hath a true Root of it's Kind.

It is true, the Reafons of thefe are not here laid down; neither indeed can they be rendesed fo plain and intelligible by Words, as by an Algebraick Procefs, from whence the Theorems or Rules here given, had their firft Invention; as thall be thewed in the next Part, when I come to treat of refolving compounded or adfected Equations; however, take this fhort and general Account of this Method.

This, and all other of the new Methods of Converging Series (as they are called), are very different from the former (and fill common) Methods of extracting Roots, which require the firlt fingle Side or Root of the firt Period (in any Relolvend) to be taken exactly true, and then by involving, and other tedious Ways of ordering it, there is formed a Divifor; which helps to grope out by Trials a fecond Figure in the Root. And fo proceed on from Point to Point; ftill repeating the whole Work for every fingle Figure that comes into the Root. And if by Chance there be a Miftake or Error committed in any one Figure (as it is poffible there may) it fpoils the whole Procefs, which muft then be wholly begun anew, or at leaft from that Part of it where the Error firft entered.

But the Nature and Defign of the Method which I have here laid down is quite otherwife; it being fo contriver, as to graduaily leffen the Difference betwixt any propofed Power, and the like Power of another Number affumed; viz. it leffens that Difference until it is either quite vanquifhed, or becomes fo infinitely fimall as to be infignificant.

Therefore when any Number is propofed to have it's Root extracted; it is here required to take the next neareft Rcat of the firft Period in the Refolvend; that fo the Difference betwixt the
given Refolvend, and the Homogeneal Power (viz. the like Power) of the Root thus taken, may be lefs either in Excefs, or Defect. Which Difference being reduced, or depreffed lower, becomes fo prepared, that by plain Divifion (comparatively) there will arife fuch Quotient Figures, as will both correct and increafe the firf Root to three Places of Figures at leaff, fometimes to four or five Places of Figures; according as the faid firft Difference happens to be more or lefs (of which you may have obferved Inflances) : But yet there will be a Remainder left, and perhaps an Excefs or Defect in the Root fo increafed, viz. in the laft Figure of it.

Now to rectify the faid Excefs or Defect in the Root, and to difcover whether the given Refolvend be a true Figurate Number, or not: That is, whether it have a true Root of it's kind; it will be neceffary to make a fecond Operation; by taking the Root fo increafed, and proceeding with it and the given Refolvend, in all refpects as in the firft Work (like to the third Example of extracting the Cube Root): I fay, if the given Refolvend have a true Ront, it will appear at this fecond Operation, and all the aforefaid Differences, $\xi^{\circ} c$. will be vanquifhed; provided the Root required is not to have more than three (or four) Places of Figures in it.

But if the Root be to have more than three Figures in it ; or, that the given Refolvend prove to be a Surd Number. Then there will be a Difference as before; which will afford Quotient Figures to rectify and increafe the Root laft taken, to three Times as many Places of Figures, as it had at the Beginning of that fecond Operation. As you may fee in the aforefaid Example 3. of the Cube Root; wherein that Root is increafed to twelve Places of Figures at two Operations; which if it were to be extracted the old (and ftill common) way, it would require at leaft forty times the Number of Figures I have here ufed.

Again, if there chance to be a Miftake committed in any Operation performed by the Method here laid down, that Miftake will not deftroy the precedent Work, but will be rectified in the next Operaticn, although it were not difcovered beiore. And thus you may proceed on to a third Operation, which will afford ${ }_{27}$ Places of Figures in the Root, $\xi^{\circ} c$. with very little Trouble, if compared with former Methods.

The brief Account, which I have here given (by Way of explaining the Nature of this Method of extracting Roots) being well confidered and compared with the feveral Operations of the foregoing Examples, muft needs help the Learner to form fuch an Idea of it, that he cannot (I prefume) but underftand how to
procted in extracting the Root out of any fingle Power, how kigh foever it be; without the Help of an Algebraick Theorem. Not but when that comes to be once underftood; the Work will be much readier and eafier performed: As will appear in the next Part.

I did intend to have here inferted the whole Bufinefs of Intereft and Annuities ; but finding that it would require too large a Difcourfe, to thew the Grounds and Reafons of the feveral Theorems ufeful therein, I have therefore referved that Work for the Clofe of the next Part. Neither indeed can the raifing of thofe Theorems be fo well delivered in Words, as by an Algebraick $W$ ay of arguing; which renders them not only muçh fhorter, but alfo plainer and eafier to be underftood.

I have alfo omitted that Rule in Aritbmetick, ufually called the Rule of Pofition, or Rule of Falle: Becaufe all fuch Queftions, as can be anfwered by that gueffing Rule, are much better done by any one who hath but a very fmall fmattering of Algebra. I fhal! therefore conclude this Part of Numerical Arithmetick; and proceed to that of Algebraick Arithmetick, wherein I would advife the young Learner not to be too hafty in paffing from one Rule to another, and then he will find it very eafy to be attained.

# A N <br> <br> INTRODUCTION <br> <br> INTRODUCTION TO THE <br> <br> mathematicks. 

 <br> <br> mathematicks.}

## PARTII.

## $\begin{array}{lllll}P & R & O & \ddot{E} & M\end{array}$

HA VIN G formerly wrote a fmall Tract of algebra, perhaps it may feem (to fome) very improper to write again upon the jame Subject; but only (as the ufual Cufom is) to bave referred my Reader to that Tract. However, becaufe the following Parts of this Treatije are managed by an Algebraick Method of arguing ; which may fall into the Hands of thofe who bave not Seen that T raet, or any otber of that Kind; I thought it convenient to accommodate the young Geometer with the firft Elements, or principal Rules, by which all Operations in this Art are performed; that fo be may not be at a Loss as be proceeds farther on: Befides, what I formerly wrote was only a Compendium of that which is here fully bandled at large.
The principal Rules are Godition, 玉ubfraction, sultiplis cation, $\mathfrak{D i b}$ ibrion, Involution, and $\mathbb{C}$ bolution, as in common arithmetick, but differently performed; and therefore fome call it algebaaick Arithmetith. Others call it Aritymetisk in פprctie, becaufe all the Quantities concerned in any Queftion, remain in their fubftituted Letters (howfoever managed by $A d$ dition, Subfraciion, or Multiplication, \&cc.) without being deftroyed or changed into others, as Figures in common Arithmetick are.
Mr. Harriot called it 1 ogiffica פpeciofa, or Specious Computation.

CHAP.

## C H A P. I.

## Concerning the @Bethon of noting down inuantitieg; and tractug tbeir bitpg, Ėc.

## Sect. I. Of $\mathbf{~ R a t a t i o n . ~}$

THE Method of noting down Letters for Quantities is various, according to every one's Fancy; but I fhall here follow the fame as in my former Tract, and reprefent the Quantity fought (be it Line or Number, $\mathcal{E}^{\circ}$ c.) by the fmall (a), and if more Quantities than one are fought, by the other fmall Vowels, e. $u$. or $y$.

The given Quantities are reprefented by the fmall Confonants, b. c. d. f. g. छ${ }^{\circ} c$.

And for Diftinction fake, mark the Points or Ends of Lines in all Schemes, with the capital or great Letters, viz. A.B. C. D. छsc.

When any Quantity (either given or fought) is taken more than once, you muft prefix it's Number to it; as $3 a$ ftands for $a$ taken three times, or three times $a$, and $7 b$ ftands for feven times $b, \Xi^{\circ} c$.

All Numbers thus prefixt to any Quantity, are called Coëffcients or Fellow-Factors; becaufe they multiply the Quantity ; and if any Quantity be without a Coëfficient, it is always fuppofed or underflood to have an Unit prefixed to it ; as $a$ is $1 a$, or $b$ is $\mathbf{I} b, \varepsilon^{\circ} c$.

The Signs by which Quantities are chiefly managed are the fame, and have the fame Signification, with thofe in the firft Part, page 5. which I here prefume the Reader to be very well acquainted with. To them muft be here added thefe three more; Viz. $\left\{\begin{array}{l}\text { ©- } \\ \omega \\ \sqrt{v}\end{array}\right\}$ the Sign of $\left\{\begin{array}{l}\text { Involution. } \\ \text { Evolution, or extracting Roots. } \\ \text { Irrationality, or Sign of a Surd Root. }\end{array}\right.$

All Quantities that are expreffed by Numbers only (as in Vulgar Aritbmetick) are called Abjolute Numbers.

Thofe Quantities that are reprefented by fingle Letters, as, a. b. c. $d_{0} \xi^{\circ} c$. or by feveral Letters that are immediately joined together; as $a b . c d$. or $7 b d . \vartheta^{2} c$. are called Simple or Single whole Quantities.

But when different Quantities reprefented by different or unlike Letters, are connected together by the Signs ( + or - ); as $a+b, a-b$, or $a b-d c, \xi^{c} c$. they are called Compound whole Quantities.

Chap. I. Jatation of quantities.
And when Quantities are expreffed or fet down like Vulgar Fractions, Thus $\frac{a}{b}$, or $\frac{a+b}{d}$, or $\frac{a b+d c}{b}$, \&c. they are called Fractional or Broken Quantities.

The Sign wherewith Quantities are connected, always belongs to that Quantity which immediately follows it ; and therefore all the Quantities concerned in any Queftion, may ftand in any order at Pleafure, viz, the moft convenient for the next Operation. As $a+b-d$ may ftand thus $b-d+d$, or thus $a-d+b$, or $-d+a+b \& c$. theefe being ftill the fame, tho' differently placed.

That Quantity which hath no Sign before it (as generally the leading Quantity hath not) is always underftood to have the Sign + before it. As $a$ is $+a$, or $b-d$ is $+b-d$, \&ce. for the Sign + is the Affirmative Sign, and therefore all leading or pofitive Quantities are underftood to have it, as well as thofe that are to be added.

But the Sign - being the Negative Sign, or Sign of Defect, there is a Neceffity of prefixing it before that Quantity to which it belongs, wherever the Quantity flands.

## Sect. 2. Of tating the oteps ufed in bringing Duantitieg to an Equation.

THE Method of tracing the Steps, ufed in bringing the Quantities concerned in any Queftion to an Equation, is beft performed by regiftering the feveral Operations with Figures and Signs placed in the Margin of the Work, according as the feveral Operations require; being very ufeful in long and tedious Operations.

For Inftance: If it be required to fet down and regifter the Sum of the two Quantities, $a$ and $b$, the Work will fland, Thus $\left\lvert\, \begin{array}{ll}1 & a \\ 2 & b\end{array} \quad\right.$ Firft fet down the propofed Quantities, $a$ and $b$, $1+2 \cdot 3 l a$ over-againft the Figures 1, 2, in the fmall Column (which are here called Steps), and againft 3 Then againft that third Step, fet down $I+2$ in the Margin; which denotes that the Quantities againft the firt and fecond Steps are added together, and that thofe in the third Step are their Sum.

To illuftrate this in Numbers, fuppofe $a=9$, and $b=6$. Then it will be,

Thus $1+\left.\left.2\right|_{3}\right|_{3} ^{a}=9 . \begin{aligned} & a \\ & b=6=9+6=15 \\ & a+b=i n g ~ t h e ~ S u m ~ o f ~\end{aligned}$ and 6 .

Again, If it were required to fet down the Difference of the fame two Quantities; then it will be,

Thus | 1 | $\begin{array}{l}a=9 \\ 2\end{array}$ |
| :--- | :--- |
|  | $\frac{b=6}{a-b=9-0=3}$ | the Diff. between 9 and 6.

Or if it were required to fet down their Product.
Then it will be,


Note, Letters fet or joined immediately together (like a Word) fignify the Rectangle or Product of thofe Quantities they reprefent; as in the laft Example, wherein $\mathrm{ab}=54$ is the Product of $\mathrm{a}=9$ and $\mathrm{b}=6$. ® $^{\circ} c$.

## axtoms.

1. If equal Quantities be added to equal Quantities, the Sum of thefe Quantities will be equal.
2. If equal Quantities be taken from equal Quantities, the Quantities remaining will be equal.
3. If equal Quantities be multiplied with equal Quantities, their Products will be equal.
4. If equal Quantities be divided by equal Quantities, their Quotients will be equal.
5. Thofe Quantities, that are equal to one and the fame Thing, are equal to one another.

Note, I advife the Learner to get thefe five Axioms perfectly by Heart.

Thefe Things being premifed, and a perfect Knowledge of the Signs and their Significations being gained, the young Algebroift may proceed to the following Rules. But firf I muft make bold to advife him here (as I have formerly done) that he be very ready in one Rule before he undertakes the next.

That is, He fhould be expert in Addition, before he meddles with Subfraction; and in Subftraction, before he undertakes Multiplication, \&c. becaufo they have a Dependency one upon mother.

C H A P.

## C H A P. II.

## Concerning the Sit Principal Rules, of algebtaick gritlumetick, of whole ©uantities.

## Sect. I. GDuition of whole Duantitieg.

ADDITION of whole Quantities admits of three Cafes.
Cafe I. If the Quantities are like, and have like Signs; add the Co-ëfficients or prefixt Numbers together, and to their Sum adjoin the Quantities with the fame Sign.

|  | $\left\|\begin{array}{l} 1 \\ 2 \end{array}\right\|$ | Exam. 1. $a$ $a$ | Exam. 2. $-a$ | $\begin{gathered} \text { Exam. } \\ 5 . \\ 5 b \\ 3 b \end{gathered}$ | Exam. 4 <br> - $7 b c$ <br> $-8 b c$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1+2 | 3 | $2 a$ | $2 a$ | 86 | -15 |


| Thus | 1 2 | Exam. $5 \cdot$ $3 a+5 b$ $2 a+7 b$ | Exam. 6. $3 a-5 b$ $2 a-7 b$ | $\begin{aligned} & \text { Exam. } 7 . \\ & 6 a b+12 \\ & 3 a b+24 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\underline{1+2}$ | 3 | $5 a+12 b$ | 5 | $9 a b+3^{6}$ |

The Reafon of thefe Additions is euident from the Work of Common Arithmetick. For fuppofe a, to reprefent one Crown, to which if I add one Crown, the Sum will be two Crowns, or 2 a. as in Example I.

Or if we fuppofe - a, to reprefent the Want or Debt of one Crown, to wbich if another Want or Debt of one Crown be added, the Sum muft needs be the Want or Debt of two Crowns, or - 2 a; as in Example 2. And fo for all the reft.

Cafe 2. If the Quantities are alike, and have unlike Signs; fubitract the Co-ëfficients, from each other, and to their Difference join the Quantities with the Sign of the greater.

|  | 1 | Exam. 8. <br> $+5{ }^{\text {a }}$ <br> $-2 a$ | Exam. 9. $-5 a$ $+3 a$ | \|Exam. 10. <br> $-7 b c$ <br> $-6 b c$ | $\begin{gathered} \text { Exam. 11 } \\ -9 a b d \\ +7 a b d \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\underline{+2}$ | 3 | +2a | -2a | -1bc | -2abd |


|  | 1 2 | Example 12. $\begin{array}{r} 7 a-5 b \\ -5 a+7 b \end{array}$ | Example 13. $\begin{aligned} & -8 a b-7 b c+15 \\ & +12 a b+7 b c-24 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $1+2$ | 3 | $2 a+2 b$ | $4 a b-9$ |

The Reafon of the Operations in this Cafe may be eafily underfood, by any one that duly confiders the comparing of Stock and Debts together, or the ballancing of Accounts betwixt Debtor and Creditor. That is, the Affirmative Quantities reprefent the Stock or Creditor: The Negative Quantities reprefent the Debts; and their Sum reprefents the Ballance, \&xc.

Cafe 3. When the Quantities are unlike, fet them all down, without altering their Signs; and thence will arife compound Quantities, which can be no otherwife added but by their Signs.


Here follow a few Examples wherein all the 3 Cafes are promifcuoully concerned.
$\left.\underline{\left.\mathbf{1}+2\left|\begin{array}{l}1 \\ 2 \\ 3\end{array}\right| \frac{a a+2 a b+b b}{a a-2 a b+b b} \right\rvert\,} \right\rvert\, \begin{gathered}8 a b+b c-37 \\ -7 a b-b c+42-6 d \\ a b+5-6 d\end{gathered}$

$\mathbf{1 + 2} |$| 1 |  |  |
| :--- | :--- | :--- |
| 2 | $\begin{array}{r}a a-2 a b+b b \\ +4 a b+b b\end{array}$ | $9 b c+7 a b-45$ <br> $4 d-6 b c-7 a b+d a$ <br> $a-2 a b+b b$ |
| $3 b c+4 a-45+d a$ |  |  |



## Sect. 2. Subftration of whole quantitieg.

$S$
UBSTRACTION of whole Quantities is performed by one general Rule.

## R U L E.

Change all the Signs of the Subfrabend (viz. of thofe Quantities which are to be fubfracted) or fuppofe them in your Mind to be changed; then add all the Quantities together, as before in Addition, and their Sum will be the true Remainder or Difference required.

This

This general Rule is deduced from thefe evident Truths.
To fubftract an Affirnative Quantity, from an Affirmative, is the fame as to add a Negative Quantity to an Affirmative: that is $+2 a$ taken from $+3 a$, is the fame with $-2 a$ added to $+3 a$. Confequently, to fubftract a Negative Quantity from an Affirmative, will be the fame as to add an Affirmative Quantity to an Affirmative: that is $-2 a$ taken from $+3 a$ will be the fame with $+2 a$ added to $+3 a$.

|  | 1 <br> 2 | Exam. 1. 2a a a | Exam. 2. $-2 a$ $-\quad a$ | Exam. 3. $8 b$ $3 b$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T-2 |  | $a$ | - | $5 b$ |  |  | c |


|  | Exam. 5. <br> $5 a+12 b$ <br> $2 a+7 b$ | $\begin{gathered} \text { Exam. } 6 . \\ 5 a-12 b \end{gathered}$ | $\begin{gathered} \text { Exam. } 7 . \\ 9 a b+3 \\ 3 a b+24 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 1-2 | $3 a+5 b$ | $3 a-5 b$ | $6 a b+12$ |

If thefe 13 Examples be compared with thofe in Addition, the Work will appear very evident, thefe being only the Converfe or Proof of thofe; according to the Nature of Addition and SubAracrion in common Aritbmetick.

More Examples in Subftraftion. $1-2 |$| 1 | $\begin{array}{c}a+b \\ 2\end{array}$ | $\begin{array}{c}5 b c+3 d a \\ a-b\end{array}$ | $\begin{array}{l}8 a+5 b d+25 \\ 5 b c-4 d a\end{array}$ |
| :--- | :--- | :--- | :--- |
| $+2 a-3 b d-12$ |  |  |  |



That $a-b$ taken from $a+b$ leaves $+2 b$ for the Remainder, as in the firft of thefe Examples, may be thus proved:

| Let | 1 | $a+b=z$ |  |
| :---: | :---: | :---: | :---: |
| And | 2 | $a-b=x$ |  |
| $2+b$ | 3 | $a=x+b$ | per Axiom 1. |
| $1-3$ | 4 | $b=z-x-b$. | per Axiom 2. |
| $4+b$ | 5 | $2 b=z-x$ which was to be proved. |  |

The Truth of all Operations in Sulffraction, where any Doubt arifes, may be proved, by adding the Subftrahend to the Remainder, as in Common Aritbmetick.

| From <br> Take | $E X A M P L E$. |  |  |  | Subftrahend. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | $+5 a$ |  | $\div 9 b c$ |  |
|  | 2 | -2a | $\underline{+3 b}$ | -bda_ |  |
| $\mathrm{r}-2$ | 3 | +7a | -3b | +0da-9bc | Remamder. |
| $2+3$ | 4 | $+5 a$ | 0 | $9 b c$ | Proot. |

## Set. 3. Myultiplication of wbole @uantitiç.

5 ULTIPLICATION of whole Quantities admits
Cafe 1. When the Quantities have like Signs, and no Coëfficients, fet or join them together, and prefix the Sign + before them; and that will be their Product.

| Thus $\{$ | 1 | Exan $a$ $b$ | $\begin{gathered} \text { aram. } 2 \\ -a \\ -b \\ \hline \end{gathered}$ | Exam. 3. $a+b$ $d$ | $\begin{aligned} & \text { Exam. } 4 \\ & -a-b \\ & -d \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\times 2$ | 3 | $a b$ | $+a b$ | $a d+b d$ | $+a d+b d$ |

Cafe 2. If there be Coëfficients; multiply them, and to their Product adjoin the Quantities fet together as before.

Chap. 2. M9ultiplication of ©uantitieg.
15.

Thus $\left\{\begin{array}{c|c|c|c|}\hline 1 & 5 a & -6 d & \text { Exam. }^{2}+7 . \\ & 5 a b \\ \hline\end{array}\right.$

| Exam.8. |
| :---: |
| $a+b$ |
| $\frac{5 b}{5 a b+5 b b}$ |

Cafe 3. When the Quantities have unlike Signs; join them and the Product of the Coëficients together (as before), but pre: fix the Sign - before them;


That is, + into + , or - into,- gives +$\}$ in the Product.
But + into - or - into + , gives -
That + into + will produce + in the Product, is evident from Multiplication in Common Aritbmetick: viz. +5 into +7 will give $+35 \mathrm{E}^{\circ} c$. But that + into - , or - into + fhould produce the Sign -, as in the four laft Examples; and that - into - fhould produce the Sign + , as in the fecond, fourth, and fixth Examples, may perhaps feem fomewhat hard to be conceived; and requires a Demonftration.

Firft to prove that $-7 b$ into $+3 f=-21 b f$. As in Example II.
Suppofe
Then will
But
$2 \times 3$
4-21bf $\left|\begin{array}{l}\text { 2 } \\ 5\end{array}\right| \begin{aligned} & \text { per Axiom } 3 . \\ & \text { per Axiom } 2 .\end{aligned}$
Confequently -1 into - , or - into + produces - , which was the Thing to be proved.

Secondly to prove that - $7 b$ inte $-3 f$ gives $+21 b f$ as in Example 12.

| Let | $1 a-7 b=0$ <br> Then <br> But | $\left.\begin{array}{l}4 a=7 b \\ 4 a=7 \\ 4\end{array}\right\}$ as before. |
| ---: | :--- | :--- |
| the $2 \times 3$ is | 4 | $-12 a f=-21 b f$ by what is proved above, |
| $421 b f$ | 5 | $-12 a f+21 b f=0$. per Axiom I. |

Confequently - into - gives + , which was to be proved.

Or thefe may be otherwife proved by Numbers.
Thus, fuppore $\left\{\begin{array}{l}a=20 \\ b=14\end{array}\right\}$ and $\left\{\begin{array}{c}c=12 \\ d=8\end{array}\right\}$ or any other Then $\quad \overline{a-b=6} \quad \overline{c-d=4}$ per Axiom 2.
Confequently, $\overline{a-b} \times \overline{c-d}=6 \times 4=24$, per Axiom 3 . but $\overline{a-b} \times \overline{c-d}$, according to the precedent Rules, will be, $a c-c b+b d-d a$, which, if true, muft be equal to 24.

Proof
Hence

$$
\left\{\begin{array}{rlrl}
a c=20 \times 12 & =240 & c b=12 \times 14=168 \\
b d=14 \times 8=112 & & d a=8 \times 20=160
\end{array}\right.
$$

And $+b d=35^{2}$ per Axiom 1 .

Leaves $a c+b d-c b-d a=35^{2}-3^{28}=24$, which plainly fhews,

That + into - produces -
And - into - produces +$\}$ in the Product.
Q.E.D.

Note, If the Multiplier confifts of feveral Terms, then every one of thofe Terms muft be multiplied into all the Terms of the Multiplicand; and the Sum of thofe particular Products, will be the Product required, as in Common Aritbmetick.


$\mathrm{I} \times 2$| 1 | $a a-b a$ |  |
| :--- | :---: | :--- |
| 2 | $a+b$ | $\begin{array}{c}2 a-2 d \\ 3 a-4 b \\ 3 a-a b b\end{array}$ |


|  | $\left\lvert\, \begin{aligned} & 1 \\ & 2 \end{aligned}\right.$ | $\begin{gathered} a a+2 a+4 \\ a-2 \end{gathered}$ | $\begin{gathered} a-b a . \\ a+b \end{gathered}$ |
| :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & a a a+2 a a+4 a \\ & -2 a a-4 a-8 \end{aligned}$ | $\begin{array}{r} a a a-b a a \\ +b a a \end{array}$ |
| $1 \times 2$ | 3 | a $a,-8$ | $a a a+b b b$ |

## Sect. 4. Divifian of wbole Duantitieg.

DIvifion of Species, is the converfe or direct contrary to that of Multiplication, and confequently is performed by converfe Operations (as in common Aritbmetick), and admits of four Cafes.

Cafe I. When the Quantities in the Dividend, have like Signs to thofe in the Divifor, and no Co ëfficients in either; caft off or expunge all the Quantities in the Dividend, that are like thofe in the Divifor; and fet down the other Quantities with the Sign + for the Quotient required.


Cafe 2. When the Quantities in the Dividend have unlike Signs to thofe in the Divifor ; then fet down the Quotient Quantities found as before, with the Sign - before them.

| Thus $\{$ | $\begin{array}{l}1 \\ 2\end{array}$ | $\pm a b$ | $-a b-b d$ |
| :---: | :---: | :---: | :---: |
| $1 \div 2$ | $-b$ | $+b$ | $-b c+b c d+b c f$ |
| 3 | $-a c$ |  |  |

Cafe 3. If the Quantities in the Dividend and Divifor, have Co-ëficients; divide the Numbers (as in common Arithmetick) and to their Quotients adjoin the Quotient Quantities.

| Thus $\left\{\begin{array}{c}15 a b \\ 2\end{array}\right.$ | $42 d b$ <br> $3 b$ | $-72 a f-21 b f$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $1 \div 2$ | 3 | $5 a$ | $-6 d$ | $3 f$ |

Note, When the Quantities and Co-ëfficients in the Divifor and Dividend are all the faıne, the Quotient will be an Unit, or 1.

| Thus $\{$ | $\begin{array}{ll} a b \\ a & b \end{array}$ | $\begin{array}{r} 9 b c \\ -9 b c \end{array}$ | $\begin{aligned} & 7 a b+5 b c \\ & 7 a b+5 b c \end{aligned}$ | $\begin{array}{r} 8 a b+4 d \\ -8 a b-4 d \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| $1 \div 2$ | I | - I | I | - I |

Cafe 4. When the Quantities in the Divifor cannot be exactly found in the Dividend; then fet them both down like a Vulgar Fraction, as in common Arithmetick.
Thus $\left\{\begin{array}{c|c|c|c|c}1 & a & 6 b c & 5 b+a a & 8 a d c \\ 2 & b & 3 d & 5 d+7 b & 4 a b c \\ \hline 1 \div 2 & 3 & \frac{a}{b} & \frac{2 b c}{d} & \frac{5 b+a a}{5 d+7 b} \\ \hline\end{array}\right.$
N. $B$. In Divifion one thing muft be very carefully obferved; viz. that like Signs give + and unlike Signs give - in the Quotient; which needs no other Proof than that already laid down in the laft Section, if duly compared with what hath been faid concerning Multiplication and Divifion, in Vulgar Arithmetick.

Examples of Divifion at large.


Or Divifion of Quantities may fand as Numbers in common Arithmetick do; thus

$$
\begin{array}{r}
3 a-6) \begin{array}{r}
6 a a a a-96 \quad(2 a a a+4 a a+8 a+16 \\
6 a a a a-12 a a a \\
0+12 a a a-90 \\
+\quad \frac{12 a a a-24 a a}{0+24 a a-96} \\
\frac{+24 a a-48 a}{0+48 a-96} \\
\frac{148 a-96}{0} 0
\end{array}
\end{array}
$$

That is, $\overline{6 a a a-9 b} \div \overline{3^{a-6}}$ gives $2 a a a+4 a a+8 a+16$ for the Quotient, as may eafilv be proved by Multiplication, viz. $\overline{2 a a a+4 a a+8 a+16} \times \overline{3^{a-6}}$ will produce $6 a^{4}-96$; and fo for the reft.

## Sect. 5. Imualutian of whole Dunantities.

INvolution is the railing or producing of Powers, from any propofed Root, and is performed in all refpects like Multiplication, fave only in this; Multiplication admits of any different Factors, but Involution ftill retains the fame.

$$
E X A M P L E S
$$

## $E X A M P L E S$.



Note, The Figures placed in the Margin, after the Sign (2) of Involution, thew to what Height the Root is involved; and are called Indices of the Power; and are ufually placed over the involved Quantities, in order to contract the Work, efpeciaily when the Powers are any thing high.

Thus $\left\{\begin{array}{l}a=a \\ a^{2}=a a \\ a^{3}=a a a \\ a^{4}=a a a a\end{array}\right.$
And $\left\{\begin{array}{l}a^{5}=a a a a a \\ a^{6}=a a a a a \\ a^{5} b^{5}=a a a a b b b b b \\ a^{3} b^{3} d^{3}=a a a b b b d d d\end{array}\right.$
If the Quantities have Co -ëfficients, the Co -ëfficients mut be involved along with the Quantities, as in thefe,


Involution of Compound Quantities is performed in the fame manner, due regard being had to their Signs and Co-ëfficients, if there be any. As for inftance, fuppofe $a+b$ were given to be involved to the fifth Power.


|  | 7 | $\left\lvert\, \begin{aligned} a a & +3 a a b+3 a b b+b b b \\ a & +b \end{aligned}\right.$ |
| :---: | :---: | :---: |
| $\times$ | 8 | $3 a^{3} b+3 a b b b+a b b b$ |
| + 6 | 9 | + $a^{3} \cdot b+3 a a b b+3 a b b b+b^{4}$ |
| $10^{5}$ | 10 | $\begin{aligned} & a^{+}+4 a^{3} b+6 a a b b+4 a b b b+b^{4} \\ & a+b \end{aligned}$ |
| $\times a$ | 11 | $a^{5}+4 a^{4} b+6 a^{3} b b+4 a b^{3}+$ |
| $1 \times 6$ | 12 | $a^{4} b+4 a^{3} b b+6 a a b^{3}+a b^{4}+b^{5}$ |
| $10^{5}$ | 13 | $\begin{aligned} & a^{5}+5 a^{4} b+10 a^{3} b b+10 a a b^{3}+5 a b^{4}+b^{5} \\ & 8 \mathbf{c} . \end{aligned}$ |

Again, Let $a-b$, called a Refidual Root, be given.

| Then | 1 | $\begin{aligned} & a-b \\ & a-b \end{aligned}$ |
| :---: | :---: | :---: |
| $\times a$ | 2 | $\overline{a a-a b}$ |
| 1x-b | 3 | $a b+b b$ |
| $10^{2}$ | 4 | $a a-2 a b+b b$ the Square of $a-b$ $a-b$ |
| $\times \square$ | 5 | $\begin{aligned} a a a & =2 a a b+a b b \\ & -a a b+2 a b b-b b b \end{aligned}$ |
| $10^{3}$ | 7 | $\overline{a a a-3 a a b+3^{a b b}-b b b \text {, the Cube of } a-b}$ $a-b$ |
| $\begin{array}{r} 7 \times a \\ 7 \times-b \end{array}$ | 8 | $\overline{a a a b-3^{a b a b}+3 a b b b-a b b b}$ <br> - $a a a b+3 a a b b-3 a b b b+b b b b$ |
| $10^{4}$ | 10 | $\begin{aligned} & a a a a-4 a a a b+b a a b b-4 a b b b+b b b b \\ & a-b \end{aligned}$ |
| $10 \times a$ | 11 | $a^{5}-4 a^{4} b+6 a^{3} b b-4 a a b^{3}+a b^{4}$ $a^{4} b+4 a^{3} b b-6 a a b^{3}+4 a b^{4}$ |
| $10 \times-6$ 10.5 | 12 | $\frac{-a^{4} b+4 a^{3} b-6 a a b^{3}+4 a b^{4}-b^{5}}{a^{5}-5 a^{4} b+10 a^{3} b b-10 a a^{3}+5 a b^{4}-b^{5}}$ |

By comparing thefe two Examples together, you may make the following Obfervations.

1. That the Powers raifed from a Refidual Root (viz. the Difference of two Quantities) are the fame with their like Powers raifed from a Binomial Root (or the Sum of two Quantities) fave only in their Signs; viz. the Binomial Powers have the Sign + to every Term, but the Refidual Powers have the Signs + and - interchangeably to every other Term.
2. The Indices of the Powers of the leading Quantity (a) continually decreafe in Arithmetical Progreffion; viz. in the Square
Chap. 2. Jubalutiont of quantitics. 157
it is $a a, a$ : In the Cube $a a a, a a, a$ : In the Biquadrat $a a a a, a a a, a a, a$, \&c.
3. The Indices of the other Quantity $b$ do continually increafe in Arithmetical Progreffion; viz. In the Square it is $b, b b$ : In the Cube $b, b b, b b b$ : In the Biquadrat $b, b b, b b b, b b b b, \& c$.
4. The firft and laft Terms, are always pure Powers of the fingle Quantities, and are both of the fame Height.
5. The Sum of the Indices of any two Letters joined togetherin the interntediate Terms, are always equal to the Index of the higheft Power, viz. of the firft or laft Term.

Thefe Obfervations being duly confidered, it will be eafy to conceive how the Terms of any propofed Power raifed from a Binomial or Refidual Root muft ftand, without their Unciæ or Numerical Figures.

For Iuftance, fuppofe it were required to raife the Binomial Root $a+b$ to the feventh Power; then the Terms of that Power will ftand without their Uncix in this Order.
Viz. $a^{7}+a^{6} b+a^{5} b^{2}+a^{4} b^{3}+a^{3} b^{4}+a^{2} b^{5}+a b^{6}+b^{7}$.
And becaufe the Uncia (not only of any fingle Letter, but alfo) of every fingle Power, how high foever it be, is an Unit or $\mathbf{I}$ (which neither multiplies nor divides) and all the Powers of any Binomial or Refidual Root are naturally raifed by multiplying of the precedent Power into it's original Root, which is done by only joining each Letter in the Root to the precedent Power, with it's Unciz, and then removing the faid Power, when it is fo joined to the recond Letter, one place forward (either to the left or right Hand) it muft needs follow,

That the Unciæ of the fecond Terms (in any fuch Power) will always be the Sum of fo many Units added together more one, as there have been Maltiplications of the firf Root ; which will always be determined by the Index of the firlt Term in the Power.

And becaufe the Unciæ of all the intermediate Terms, are only removed along with their Letters, it alfo follows; that if they are added together, their refpective Sums will produce the true Uncixe of the intermediate Terms in the new raifed Power. As doth plainly appear from the following Numbers fo removed without their Letters; which both fhews and demonftrates an eafy Way of producing the Unciz of any ordinary Power (viz. of one not very high) raifed from either a Binomial or Refidual: Root.

Thus
Add


And fo on in this manner ad infinitum.
Now if the fe Numbers are prefixed to the aforefaid Letters, all the Terms will be compleated with their refpective Uncix, and will ftand thus;
$a^{7}+7 a^{6} b+21 a^{5} b^{2}+35 a^{4} b^{3}+35 a^{3} b^{4}+21 a^{2} b^{5}+7 a b^{6}+6$.
But that the Bufinefs of finding thefe Uncix, may be rendered yet more eafy for Practice, it will be convenient to confider what Series or Progreffion, the Uncix of each Term do make from the aforefaid additions.

|  | $\begin{aligned} & \frac{8}{工} \text { g } \\ & \text { 흔 } \\ & \text { 范 } \\ & 5 \\ & 5 \\ & \hline \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| I' | ${ }_{2}{ }^{\text {. }}$ | ".: | … ${ }^{\text {•* }}$ | .. .. | .. .. | .. .. Uncix of the fingle Rilantities ${ }^{\text {a }}$ |
| \# | .. ${ }^{2}$ |  | $\cdots{ }^{-\cdots}$ | . | .. .. | .. .. Unciz of the S |
| * ${ }^{\prime \prime}$ | - 4 | "6" |  |  |  | Uncix of the 4th Powe |
| " ${ }^{\text {] }}$ |  | $\because{ }^{\circ}$ | 10 | $\because$ |  | Unciz of the 5 th Power. |
| $\because$ | \% | $\ddot{i s}^{\circ}$ | 20 | ${ }^{\circ}$ |  | Unciæ of the 6th Power. |
| 1 | 7 | $\frac{12}{}$ | 35 $\sqrt{35}$ | $\bigcirc$ | $\frac{7}{7}$ | S Unciz of the \%th Power, \&c. |

The Unciz of the firft Term are only a Series of Units, whofe Sum is every where the Unciæ of the fecond Term. The Uncix of the fecond Term, are a Series of Numbers in Arithmetick Progreffion, whofe Sum is every where the Unciz of the next Superior Power in the third Term, and may be found by Propofi-

Chap. 2. Involution of @uantitieg.
tion 1. Chap. 6. Part 1. For Inftance, in the feventh Power it will be $\frac{\overline{+1} \times 6}{2}=21=$ the Uncia of the third Term.

The reft of the Uncix are a compounded Series, whofe refpeltive Sums may be obtained from the Uncix of their precedent Terms.
Thus $\frac{21 \times 5}{3}=35$. Then $\frac{35 \times 4}{4}=35$. Again $\frac{35 \times 3}{5}=21$. And $\frac{21 \times 2}{6}=7$ \&゚c.

From hence may be deduced this general Rule.
R U L E.

If the Index of the firft Letter of any Term be multiplied into it's own Uncia, and that Product be divided by the Number of Terms to that Place; the Quotient will be the Uncia of the next fucceeding Term forward.

That is, by the help of thofe Indices that belong to the feveral Powers of the firft or leading Letter only (as a) the true Uncixe of every Term may be eafily underfood.

$$
E X A M P L E 2
$$

Let it be required to compleat all the Terms of the aforefaid feveral Powers, viz. $a^{7}+a^{6} b+a^{5} b^{2}+a^{4} b^{3}+a^{3}$ $b^{4}+a^{2} b^{5}+a b^{6}+b^{7}$, with their proper Uncix.

1. The Index of $a^{7}$ the firit Term will be the Uncia of the fecond Term. Thus $a^{7}+7 a^{6} b$.
2. Then half the fecond Term's Index into it's Uncia, viz. $\frac{7 \times 6}{2}=21$ will be the third Term's Uncia. Thus $a^{7}+$ $7 a^{6} b+21 a^{5} b^{2}$ will be the three firf Terms.
3. Again $\frac{21 \times 5}{3}=35$ is the Uncia of the fourth Term, whence $a^{7}+7 a^{6} b^{2}+21 a^{5} b^{2}+35 a^{4} b^{3}$ will be the four firit Terms.
4. And $\frac{35 \times 4}{4}=35$ will be the Uncia of the fifth Term, whence $a^{7}+7 a^{6} b+21 a^{5} b^{2}+35 a^{+} b^{3}+35 a^{3} b^{4}$ will be the five firft Terms.

And fo proceed 'till all the Terms are compleated with their refpective Uncix; which will ftand, thus $a^{7}+7 a^{6} b+21 a^{5}$ $b^{3}+35 a^{4} b^{3}+35 a^{3} b^{4}+21 a^{2} b^{5}+7 a b^{6}+b^{7}$ a

Now here it may be further obferved, that the Uncix do only increafe until the Indices of the two Letters become equal, or change Places; and then the reft of the Unciæ will return or decreafe in the fame order. That is, wherever the Indices of the Letters are alike, there the Unciæ will be alike.

And therefore one needs to find the Unciæ (as before) but to half the Number of Terms in any Power.

If what hath been faid, and the Work of the Example be well underltood, I prefume it will be found very eafy to raife any Power from a Binomial or Refidual Root, to what Height you pleafe; without the Trouble of a continued Involution; and without the Help of fuch a Table of Powers as is propofed by Mr Oughtred in his Key to the Mathematicks, Page 40, and fince by others.

Now from thefe Confiderations it was, that I propofed this thod of raifing Powers in my Compendium of Algebra, Page 57, as wholly New (viz. fo much of it as was there ufeful) having then (I profefs) neither feen the Way of doing it, nor fo much as heard of it's being done. But fince the writing of that Tract, I find in Dr Wallis's Hiftory of Algebra, Page 319 and 331, that the Learned Sir Ifaac Newton had difcovered it long before: which the Doctor fets down in this manner.

Let $m$ be the Exponent of the Power.
Then $\left\{1 \times \frac{m-0}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5} \varepsilon^{\circ} c_{0}\right.$
Will be the Series of the Unciæ required; but he doth not tell us how they firft came to be found out, nor have I ever met with the leaft Hint of it in any Author.

## Sect. 6. EEgolution of woble Nuantitieg.

$\mathcal{F}^{\text {Volution }}$ is the extracting of Roots from any given Power. That is, it is the Converfe Work to that of Involution, and in fingle Quantities it is eafy, if the given Power have fuch a Root as is required, which may be thus known.

If the given Power have no Numbers prefixed to it, and it's Index can be divided by the Index of the Root required, the Quotient will be the Index of the Root fought. Thus, if the Cube Root of a a a a aa, viz. $a^{6}$ were required (the Index of the
Cube is 3) then 3) 6 (2. That is, $a^{3}=a^{2}$ the Root required. And fuch Operations are ufually fet down

Chap. 2. Ejolution of Duantitieg.

| Thus | 1 | $a^{\circ}$ | $a^{0} b^{0}$ |  | bo |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\omega^{2}$ | 2 | $a^{3}$ | $a^{3}{ }^{\frac{3}{3}}$ |  | $\frac{63}{}$ |
| $1 \mathrm{~m}^{3}$ | 3 | $a$ | $a^{2} b^{2}$ |  | $b^{2} d$ |
| $3 \omega^{2}$ | 4 | $a$ | $a b$ |  | $b$ |

Note, The Figures placed in the Margin after the Sign (itu) of Evolution, denote the Index of the Root to be extracted.

If the given Powers have Co-ëfficients : (viz. Numbers prefixed to them;) then you muft extract their refpective Roots, at in Vulgar Arithmetick.

But if the Root required cannot be truly extracted out of both the Co-ëfficients and Indices of the given Power; then it is a Surd, and muft have the Sign of the Root required prefixed to it.

| Thus | 1 | $a^{5}$ | 67 as | $216 b b b d d d$ |
| :---: | :---: | :---: | :---: | :---: |
| $1 \omega^{2}$ | 2 | $\sqrt{a^{5}}$ | $\sqrt{67} a^{4}$ | $\sqrt{ } 2106 b b d d d$ |
| $\left.1{ }^{1}\right)^{3}$ | 3 | $\sqrt[3]{a^{5}}$ | $\sqrt[3]{ } 67$ | 6 bd |

Evolution of compound Quantities or Powers, is a little more troublefome than that of Single Powers; and would require a great many Words to explain the Manner and Reafon of forming the feveral Canons, that are commonly ufed in extracting the Roots of compound Quantities; efpecially if the Powers be very high, छைc. I fhall therefore for Brevity's fake omit them, and inftead thereof propofe an eafy Method of difcovering the Roots of all compound Powers in general. And in order to that, it will be neceffary to premife; that if either the Sum or Difference of feveral Quantities be involved to any Power, there will arife fo many fingle Powers of the fame height, as there are different Quantities.

As for inflance, if $a+b+d$ be fquared, that is, be involved to the fecond Power, it will be $a a+2 a b+2 a d+b b+2 b d+d d$, here you have $a a, b b$, and $d d$. Again, if $a+b+d$ were cubed, viz. involved to the third Power, then you will have $a a a, b b b$, $d d d$, in it, $\varepsilon^{\circ} c$.

Whence it follows that in extracting the Roots of all compound Quantities, there muft be confidered,

1. How many different Letters (or Quantities) there are in the given Power.
2. Whether the fingle Powers of each of thofe Letters be of an equal Height, and have in them fuch a fingle Root as is required: which if they have, extract it as before.
3. Connect thofe fingle Roots together with the Sign + , and involve them to the fame Height with the given Power; that being done, compare the new raifed Power with the given Power ; and if they are alike in all their refpective Terms, then you have the Root required; or if they differ only in their Signs, the Root may be eafily corrected with the Sign - as occafion requires.

Example 1. Let be required to extract the Square Root of $c c+2 c b-2 c d+b b-2 b d+d d$. In this Compound Square, there are three diftinct Powers, viz. $b b, c c, d d$, whofe fingle Roots are $b, c, d$, wherefore I fuppofe the Root fought to be $b+c+d$, or rather $b+c-d$, becaufe in the given Power there is $-2 c d$, and $-2 b d$, therefore I conclude it is - $d$; then $b+c-d$, being fquared, produces $b b+2 b c-2 b d+c c$ $-2 c d+d d$, which I find to be the fame in all it's Terms with the given Power, although they fland in a different Pofition; confequently $b+c-d$ is the true Root required.

Example 2. It is required to extract the Square Root of a ${ }^{4}$ $-2 a a b b+b^{4}$. Here are but two fingle Powers, viz. $a^{4}$ and $b^{4}$, whofe Square Roots are $a a$, and $b b$. And becaufe in the given Power there is - $2 a a b b$, therefore I conclude it muft either be $a a-b b$, or $b b-a a$. Both which, being invoived, will produce $a^{4}-2 a a b b+b^{4}$; confequently the Root fought may either be $a a-b b$, or $b b-a a$, according to the Nature or Defign of the Queftion from whence the given Power was produced.

Example 3. Let it be required to extract the Square Root of $3^{6 a a a a}+108 a a+8 \mathrm{r}$. Here the two fingle Fowers are $36 a a a a$, and 81, whofe Roots are $6 a a$ and 9. And becaufe the Signs are all + , therefore I fuppofe the Root to be $6 a a+9$, she which being involved doth produce $36 a^{4}+108 a a+81 ;$ confequently $6 a a+9$ is the true Root required.

Example 4. Suppofe it were required to extract the Cube Root of $125 a a a+300 a a e-450 a a+250 a c e-720 a e+64 c e e$ $+540 a-288 e e+432 e-216$. In this Example there are three diftinct Powers, viz. $125 \mathrm{aaa}, 64 \mathrm{cee}$, and -216. And the Cube Root of $125 a a a$ is $5 a$; of $64 e e e$ is $4 e$; of - 216 is -6. Wherefore I fuppofe the Root fought to be $5 a+46$ -6, which being involved to the third Power, does produce
the fame with the given Power; confequently $5 a+4 e-6$ is the Cube Root required.

But if the new Power, raifed from the fuppofed Root (being involved to it's due Height), fhould not prove the fame with the given Power, viz. if it hath either more or fewer Terms in it, Esc. then you may conclude the given Power to be a Surd, which mult have it's proper Sign prefixed to it, and cannot be otherwife expreffed, until it come to be envolved in Numbers.

Example 5. Suppofe it were required to extract the Cube Root of $27 a a a+54 b a a+8 b b b$. Here are two diftinct and perfect Cubes, viz. $27 a a a$, and $8 b b b$, whofe Cube Roots are $3 a$ and $2 b$. Wherefore one may fuppofe the Roor fought to be $3 a+2 b$, which being involved to the third Power, is $27 a a a+54 b a a+36 b b a+8 b b$. Now this new raifed Power hath one Term (viz. $36 b b a$ ) more in it than the given Power hath; but this being a perfect Cube, one may therefore conclude the given Power is not fo, viz. it is a Surd, and hath not fuch a Root as was required, but muft be expreffed, or fet down,

$$
\text { Thus } 3^{37 a a a+54 b a a+8 b b b_{0}}
$$

If thefe Examples be well underftood, the Learner will fird it very eafy by this Method of proceeding to difcover the true Root of any given Power whatfoever.

## C H A P. III. <br> Of RIgebaaick Jfuations, or Weoken Quantiticg.

## Sect. I. Jotation of Fractional 2uantities.

$F^{\text {Ractional } 2 \text { uantities are expreffed or fet down like Vulgar }}$ Fractions in common Aritbmetick.

$$
\text { Thus }\left\{\frac{a}{b}, \frac{2 b c}{d}, \frac{5 b-4 a}{4 d+7^{b}} \quad \begin{array}{l}
\text { Numerators. } \\
\text { Denominators. }
\end{array}\right.
$$

How they come to be fo, fee Cafe 4, in the laft Chapter of Divifon. Thefe Fractional Quantities are managed in all refpects 1 ike Yukgar Fractions in Common Arithmetick.

Sect. 2. To altet or change different Jtationg into one Denomination, retaining the fame Value.

R U L E.

MULTIPLY all the Denominators into each other for a new Denominator, and each Numerator into all the Denominators but it's own for new Numerators.

$$
E X A M P L E S
$$

Let it be required to bring $\frac{a}{b}$ and $\frac{d}{c}$ into one Denomination.
Firft $a \times c$, and $d \times b$, will be the Numerators, and $b \times c$ will be the common Denominator, viz. $\frac{c a}{b c}$ and $\frac{b d}{b c}$ are the two Fractions required: that is, $\frac{c a}{b c}=\frac{a}{b}$, and $\frac{b d}{b c}=\frac{d}{c}$.

Again, let $\frac{b+c}{a+b}$ and $\frac{d-c}{b-d}$ be brought in one Denomination, and they will be $\frac{b b+b c-b d-d c}{b a+b b-d a-b d}$, and $\frac{a d-a c+b d-b c}{b a+b b-d a-b d}$ \&c.

## Sect. 3. To bitig whole $\mathbb{D}$ untities into Fration! of a given Denomination,

> R ULE.

MULTIPLT the whole Quantities into the given Deriominator for a Numerator, under which fubfcribe the given Denominator, and you will have the Fraction required.

$$
E X A M P L E S
$$

Let it be required to bring $a+b$ into a Fraction, whofe Denominator is $d-a$. Firft $\overline{a+b} \times \overline{d-a}$ is $d a+b d-a a-b a$ : Then $\frac{d a+b d-a a-b a}{d-a}$ is the Fraction required.

Again $b+\frac{a}{d}$ will be $\frac{d b+a}{d}$. And $\frac{a a}{d}-a$ will be $\frac{a a-d a}{a}$. Alfo $a+b+\frac{a a+b b}{a-b}$ will be $\frac{2 a a}{a-b}$.

When

When whole Quantities are to be fet down Fraction-wife, fubfribe an Unit for the Denominator. Thus $a b$ is $\frac{a b}{1}$. And $a a-b b$, is $\frac{a a-b b}{1}, \& c$.

Sect. 4. To abbeviate, or teduce Fractional Quantities into their loweft Denomination.
RULE.

DIVIDE both the Numerator and Denominator by their greateft common Divifor, viz. by fuch Quantities as are found in both; and their Quotients will be the Fraction in it's loweft Term.
Thus $\frac{a a c}{d c}$ is $\frac{a a}{d} \cdot \frac{a b b b}{a b c}$ is $\frac{b b}{c}$. And $a+\frac{b d c}{b c}=a+d$.
In fuch fingle Fractions as thefe, the common Divifors (if there be any) are eafily difcovered by Infpection only; but in compound Fractions it often proves very troublefome, and muft be done either by dividing the Numerator by the Denominator, until nothing remains, when that can be done: or elfe finding their common Meafure, by dividing the Denominator by the Numerator, and the Numerator by the Remainder, and fo on, as in Vulgar Fractions. (Sect. 4. Page 51.)

$$
E X A M P L E S
$$

Suppofe $\frac{a a c-a a d}{c d-d d}$ were to be reduced lower.
Then $c d-d d$ ) $a a c-a a d\left(\frac{a a}{d}\right.$ the Fraction required.
In this Example it fo happens that the Numerator is divided juft off by the Denominator; but in the next it is otherwife, and requires a double Divifion to find out the common Meafure, viz. Let it be required to reduce $\frac{a a a-a b b}{a a+2 a b+b b}$ to it's loweft Terms.

Firft $a a+2 a b+b b) a a a-a b b(a$

$$
a a a+2 a a b+a b b
$$

- $2 a a b-2 a b b$ the Remainder.

Then -2aab-2abb) $\begin{array}{r}a a+2 a b+b b\left(-\frac{1}{2 b}-\frac{1}{2 a} \text { a }\right. \\ \frac{a}{a}+a b\end{array}$

$$
\frac{a a+a b}{a b+b b} \begin{array}{r}
a b+b b \\
0
\end{array}
$$

Hence it "appears that $-2 a a b-2 a b b$ is the common Meafure ; by which $a$ a $a$ - $a b b$ being divided,

$$
\begin{gathered}
\text { Viz. }-2 a a b-2 a b b) \frac{a a a-a b b}{} \begin{array}{r}
a a a+a a b
\end{array}\left(-\frac{a}{2 b}+\frac{1}{2}\right. \\
-a a b-a b b \\
-a a b-a b b
\end{gathered}
$$

Then $-\frac{a}{2 b}+\frac{1}{2}$ is the new Numerator ; and $-\frac{1}{2 b}$ $-\frac{1}{2 a}$ is the new Denominator. But $-\frac{a}{2 b}+\frac{1}{2}=\frac{-2 a+2 b}{4 b}$ $=\frac{-a+b}{2 b}$ the Numerator; and $-\frac{1}{2 b}-\frac{1}{2 a}=\frac{-2 a-2 b}{4 b a}$ $=\frac{-a-b}{2 b a}$ the Denominator. Let both be multiplied with $2 b a$, and you will have $\frac{-a a+a b}{-a-b}$ the Numerator. Or changing the Signs of all the Quantities, it will be $\frac{a a-a b}{a+b}$ the new Fraction required. That is, $\frac{a a-a b}{a+b}=\frac{a a a-a b b}{a a+2 a b+b b}$. Again, let it be required to reduce $\frac{d d-b b}{d d d-b b b}$.

The common Meafure of this Fraction will be the eafieft found (as appears from Trials) by dividing the Denominator by the $\mathrm{N}_{\mathrm{H}}$ merator, E'c. Thus,

$$
\begin{aligned}
& d d-b b) \frac{d d d-b b b}{d d}\left(\begin{array}{l}
d d-b b d
\end{array}\right. \\
& \frac{d b b d-b b b) d d-b b}{d d-b d} \begin{array}{l}
d \frac{d}{b b} \\
+b d-b b \\
\frac{d d}{b b d-b^{3} b} \\
b b d-b^{3}
\end{array} \\
& 0
\end{aligned}
$$

Hence it appears that $b d-b b$ is the common Meafure that will divide both the Numerator and the Denominator.

Chap. 3.
Confequently $b d-b b) d d-b b$ $+d b-b b$
$\frac{d b-b b}{0}$
And $b d-b b) d d d-b b b\left(\frac{d d}{b}\right.$

$$
\begin{gathered}
\text { bb) } \begin{array}{c}
d d d-b b b \\
d d d-d d b
\end{array} \frac{d d}{b}+d+b \text { the new Denominator. } \\
\begin{array}{c}
\text { +ddb-bbb } \\
d d b-b b d
\end{array} \\
\frac{+b b d-b b b}{b b d-b b b} \\
0
\end{gathered}
$$

Let both be multiplied with $b$, and then you will have $\frac{d+b}{+b d+b b}$ the Numerator, $\}$ of the Fraction required.
But if after all Means ufed (as above) there cannot be found one common Meafure to both the Numerator and Denominator; then is that Fraction in it's leaft Terms already.

Note, Thefe Operations will be underftood by a Learner after he hath paffed thro' Multiplication, and Divifon of Fractions.

## Sect. 5. Godition and Subftaction of Fractional Duantitieg.

TH E given Fractions being of one Denomination, or if they are not, make them fo, per Sect. 4. Then,
R U L E.

Add or fubfiract their Numerators, as Occafion requires, and to their Sum or Difference, fubforibe the common Denominator: as in Vulgar Fractions.

## Examples in anoitian.



## Examples in Subftaction.

| $\mathbf{1}$ | $\frac{b b+a a}{c}$ <br> 2 | $\frac{a+b}{d+c}$ | $\frac{3 a+b+c}{d}$ | $\frac{2 b}{d+a}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $\frac{b b}{c}$ | $\frac{2 b-a}{d+c}$ | $\frac{2 a+c}{d}$ | $\frac{a+b-d}{d+a}$ |
|  | $\frac{a a}{c}$ | $\frac{2 a-b}{d+c}$ | $\frac{a+b}{d}$ | $\frac{b-a+d}{d+a}$ |

Sect. 6. Wultiplication of Fractional Quantities.

FIR S T prepare mixed Quantities (if there be any) by making them improper Fractions, and whole Quantities by fubfrribing an Unit under them ; as per Sect. 3. Then,

R U L E.
Multiply the Numerators together for a new Numerator, and the Denominators together for a new Denominator ; as in Vulgar Fractions.

| Thus | $\mathbf{1}$ | $\frac{a b}{c}$ | $\frac{3 a-2 b}{2 d+c}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{I} \times 2$ | 3 | $\frac{d}{f}$ | $\frac{4 a+2 b}{d}$ |

Suppofe it were required to multiply $2 a+\frac{b}{c}-25$, with $3^{6}+4 c$. Thefe prepared for the Work (per Sect. 3.) will fand

N. B. Any Fraction is multiplied with it's Denominator by cafting off, or taking the Denominator away. Thus $\frac{b}{a} \times a$ gives b. For $\frac{b}{a} \times \frac{a}{1}=\frac{b a}{1}=b, \& \mathrm{c}$.

## Sect. 7. Dibifion of Fractional Quantities.

$T \mathrm{HE}$ Fractional Quantities being prepared, as directed in the laft Section. Then,

$$
R \cup L E
$$

Multiply the Numerator of the Dividend, into the Denominator of the Divifor, for a new Numerator; and multiply the other tup together for a new Denominator; as in Vulgar Fractions.

$$
E X A M P L E S
$$

Let $\frac{a b d}{c f}$ be divided by $\frac{a b}{c}$, the Work may ftand thus, $\left.\frac{a b}{c}\right) \frac{a b d}{c f}\left(\frac{a b d c}{a b c f}=\frac{d}{f}\right.$ per Sect. 4 .

$\left.$| Or thus | 1 | $\frac{a b d}{c f}$ | $\begin{array}{c}\frac{a+b}{d} \\ \frac{a b}{c}\end{array}$ | $\frac{a a a-b b b}{a+b}$ |
| :---: | :---: | :---: | :---: | :---: |\(\left|\begin{array}{l|l|l}\frac{a a-a b+b b}{c} <br>


\mathbf{1} \div 2 \& 3 \& \frac{d}{f}\end{array}\right| \frac{a a+b a}{d c-d b} \right\rvert\,\)| $\frac{a a a c-b b b c}{a a a+b b b}$ |
| :---: |

Suppofe it were required to divide $a a+\frac{3 a b b}{a+4 b}$ by $a+b$. The Work prepared will ftand thus,
$\left.\frac{a+b}{1}\right) \frac{a a a+4 a a b+3 a b b}{a+4 b}\left(\frac{a a a+4 a a b+3 a b b}{a a+5 b a+4 b b}\right.$. But $\frac{a a a+4 a a b+3 a b b}{a a+5 b a+4 b b}=\frac{a a+3 b}{a+4 b}$ (per Sect. 4.)

When Fractions are of one Denomination, caft off the Denominators, and divide the Numerators. Thus, if $\frac{a b^{3}}{c}$ were to be divided by $\frac{b b}{c}$ it will be $b b$ ) $a b^{3}$ ( $a b$ the Quotient required.

$$
\text { For } \left.\frac{b b}{c}\right) \frac{a b^{3}}{c}\left(\frac{a b^{6} c}{b b c} \text {. But } \frac{a b^{3} c}{b b c}=a b\right. \text { (per Sect. 4.) }
$$

Again, fuppofe it were required to divide $\frac{a^{3}-a b b}{c-d}$ by $\frac{a+2 a b+b b}{c-d}$. Cafting off $c-d$ in both, it will be $a a+$ $2 a b+b b) a a a-a b b\left(\frac{a a-b a}{a+b}\right.$, \&c.

## Sect. 8. TMunlutian of Fractional Quantities.

$$
R \cup L E .
$$

INVO LVE the Number into itfelf for a new Numerator, and the Denominator into itfelf for a new Denominator; each as often as the Power requires.


## Sect. 9. Efuolution of Fractional Quantities.

F the Numerator and Denominator of the Fraction have each of them fuch a Root assis required (which very rarely happens) then evolve them ; and their refpective Roots will be the Numerator and Denominator of the new Fraction required.

Thus $|$| $\mathbf{I}\left\|\frac{9 a a b b}{4 d} d\right\| \frac{a a+2 a b+b b}{a a-2 a b+b b}$ |
| :--- |

$1 \omega^{2} |$|  | $\frac{3 a b}{2 d} \left\lvert\, \frac{a+b}{a-b}\right.$ |
| :--- | :--- | :--- |


| Again | $\mathbf{1}$ | $\frac{27 a a a b b b}{8 d d d}$ | $\frac{a a a+3 a a b+3 a b b+b b b}{a a a-3 a a b+3 a b b-b b b}$ |
| :--- | :--- | :--- | :--- |
|  | $\mathbf{1} \mathrm{~m}^{3}$ | $\frac{3 a b}{2 d}$ | $\frac{a+b}{a-b}$ |

Sometimes it fo falls out, that the Numerator may have fuch a Root as is required, when the Denominator hath not; or the Deno-
minator may have fuch a Root, when the Numerator hath not. In thofe Cafes the Operations may be fet down

Thus

| $\mathbf{I}$ | $\frac{a a b b}{d d d}$ | $\frac{a a a+4 b b-d d}{a a-2 a b+b b}$ |
| :--- | :--- | :--- |
| 2 | $\frac{a b}{\sqrt{d d d}}$ | $\frac{\sqrt{a a a+4 b b-d d}}{a+b}$ |

But when neither the Numerator, nor the Denominator have juft fuch a Root as is required, prefix the radical Sign of the Root to the Fraction; and then it becomes a Surd, as in the laft Step; which brings me to the Bulinefs of managing Surds.

## CHAP. IV.

## Of Guto mumatitest.

THE whole Doctrine of Surds (as they ca!! it) were it fully handled, would require a very large Explanation (to render it but tolerably intelligible); even enough to fill a Treatife itfelf, if all the various Explanations that may be of Ufe to make it eafy fhould be inferted; without which it is very intricate and troublefome for a Learner to underftand. But now thefe tedious Reductions of Surds, which were heretofore thought ufeful to fit Equations for fuch a Solution, as was then underftood, are wholly laid afide as ufelefs: Since the new Methods of refolving all forts of Equations render their Solutions equally eafy, although their Powers are never fo high. Nay, even fince the true Ule of Decimal Aritbmetick hath been well underifood, the Bufinefs of Surd Numbers has been managed that Way; as appears by feveral Inftances of that Kind in Dr Wallis's Hifory of Algebra, from Page 23, to 29.

I fhall therefore, for Brevity fake, pafs over thofe tedious Reduetions, and only fhew the young Algebraif how to deal with fuch Surd Quantities as may arife in the Solution of hard Queftions:

## Sect. 1. Goditian and ©ubftaction of Surd Quantities.

Cojer, WHEN the Surd Quantities are Homogeneal, (viz. are alike) add or fubftract the rational Part, if they
are joined to any, and to their Sum, or Difference, adjoin the irrational or Surd.

## Examples in Godition.



## Examples in Guftraction.




Cafe 2. When the Surd Quantities are Heterogeneal, (viz. their Indices are unlike) they are only to be added, or fubftracted by their Signs, viz. + or - . And from thence will arife Surds either Binomial, or Refidual.

Examples in adoition.


Examples in ubftrattion.


## Sect. 2. SBultiplicationt of Surd Quantities.

Cafe I. $\mathbf{V W}^{\mathrm{HEN}}$ Kind the Quantities are pure Surds of the fame Kind; multiply them together, and to their Product prefix their radical Sign.

$$
E X A M P L E S
$$



Cafe 2. If Surd Quantities of the fame Kind (as before) are joined to rational Quantities, then multiply the rational into the rational; and the Surd into the Surd, and join their Products together.

$$
E X A M P L E S
$$

$1 \times\left.\left. 2\right|_{3}\right|_{\left.\left.3 d b \sqrt{ } b c a\right|_{15 c d a} \sqrt{b c a a-d c a a}\right|_{75 \sqrt{ } a b d}}$

## Sect. 6. Dififion of Surd Quantities.

Caje I. WHEN the Quantities are pure Surds of the fame Kind, and can be divided off, (viz. without leaving a Remainder) divide them, and to their Quotient prefix their radical Sign.

$$
E X A M P L E S
$$

$1 \div 2 |$| 1 | $\sqrt{ } b a$ | $\sqrt{b c a a+d c a a}$ |  |
| :--- | :--- | :--- | :--- |
| 2 | $\frac{\sqrt{ } b}{\sqrt{ } a}$ | $\frac{\sqrt{c a}}{\sqrt{b a+d a}}$ | $\sqrt{a a a-b b b b}$ <br> $\sqrt{a a-b b}$ <br> $\sqrt{a a+b b}$ |

Cafe 2. If Surd Quantities, of the fame Kind, are joined to rational Quantities; then divide the rational by the rational, if it can be, and to their Quotient join the Quotient of the Surd divided by the Surd with it's firft radical Sign.

$$
E X A M P L E S
$$

| 1 | $3 d b \sqrt{ } b c a$ $3 b \sqrt{ }{ }^{\text {a }}$ | $\begin{aligned} & 15 c d a \sqrt{b c a a+d c a a} \\ & 3 a \sqrt{c a} \end{aligned}$ | $\left\lvert\, \begin{gathered} 75 \sqrt{ } \sqrt{ } a d \\ 5 \sqrt{ } d \\ \hline \end{gathered}\right.$ |
| :---: | :---: | :---: | :---: |
|  | $d \vee b c$ | $5 c d \sqrt{b a+d a}$ | $15 \sqrt{\text { ab }}$ |
|  |  |  | Note, |

Note, If any Square be divided by it's Root, the Quotient will be it's Root.
$E X A M P L E S$.
\(\mathrm{I} \div 2\left|$$
\begin{array}{l}\mathrm{I} \\
2\end{array}
$$\right| \begin{gathered}a <br>

\sqrt{ } a\end{gathered}\left|\sqrt{\frac{b b+2 b c+c c}{b b+2 b c+c c}}\right|\)| $a a a a-2 b b a a+b b b b$ |
| :--- |
| $\sqrt{ } a \mid \sqrt{a^{4}-2 b b+2 b a+b^{4}}$ |

## Sect. 4. Jnsulutian of Surd Quantities.

Cafe I. WHEN the Surds are not joined to rational Quantities; they are involved to the fame Height as their Index denotes, by only taking away their radical Sign.

$$
E X A M P L E S
$$

| $1 \mathbb{Q}^{2}$ | 1 | $\sqrt{ } a$ | $\sqrt{b c a}$ | $\sqrt{a a-b b}$ |
| :--- | ---: | ---: | ---: | ---: |
| 2 | $a$ | $\sqrt{5 a-d a}$ |  |  |
| $b c a$ | $a a-b b$ | $5 a-d a$ |  |  |

Cafe 2. When the Surds are joined to rational Quantities; involve the rational Quantities to the fame Height as the Index of the Surd denotes; then multiply thofe involved Quantities into the Surd Quantities, after their radical Sign is taken away, as before.


The Reafon of only taking away the radical Sign, as in Cafe I. is eafily conceived, if you confider that any Root being involved into itfelf, produces a Square, $\mathcal{E}^{\circ}$ c. And from thence the Reafon of thofe Operations performed by the fecond Cafe may be thus fated.

Suppofe $b \vee a=x$. Then $V=\frac{x}{b}$ per Axiom 4. and both Sides of the Equation being equally involved, it will be $a=$ $\frac{x x}{b b}$. Then multiplying both Sides of the Equation into $b b$, it becomes $b b a=x x \operatorname{per}$ Axiom 3. Which was to be proved.

Again, Let $5 d \vee c a=x$ : Then $\vee i a=x \frac{x}{5 d}$, and $c a$ $=\frac{x x}{25 d d}$.

Alfo from hence it will be eaíy to deduce the Reafon of multiplying Surd Quantities, according to both the Cafes. For
$\left.\begin{array}{c|c|c}\text { Suppore }\{ & \mathbf{I} & \sqrt{ } b=z \\ 2 & \sqrt{ } a=x\end{array}\right\}$ Example $\mathbf{1}$. Cafe $\mathbf{I}$.

| Let $\{$ | 1 | $\left.\begin{array}{r}d \sqrt{2} b c=z \\ 3 b \sqrt{b}=x\end{array}\right\}$ Example 1. Cafe 2. |
| :---: | :---: | :---: |
| $1 \div d$ | 3 | $\sqrt{ } b c=\frac{z}{d}$ |
| $2 \div 3{ }^{6}$ | 4 | $\vee a=\frac{x}{3 b}$ |
| $4 \times 3$ | 5 | $\checkmark a b c=\frac{z x}{3 b d}$, from what is proved above. |
| $5 \times 3 b d$ | 6 | $3 b d \sqrt{ } b c a=z x$, \&cc. for the reft. |

Divifion being the Converfe to Multiplication, needs no other Proof.

## C H A P. V.

Concerning the Nature of $\mathbb{E}$ quatiant and bow to prepare them for a Balution.

WHEN any Problem or Queftion is propofed to be analytically refolved; it is very requifte that the true Defign or Meaning thereof, be fully and clearly comprehended (in all it's Parts) that fo it may be truly abitracted from fuch ambiguous Words as Queftions of this Kind are often difguifed with; otherwife it will be very difficult, if not impoffible, to ftate the Queflion right in it's fubftituted Letters, and ever to bring it to an Equation by fuch various Methods of ordering thofe Leeters as the Nature of the Queftions may require.

Now the Knowledge of this difficult Part of the Work is only to be obtained by Practice, and a careful minding the Solution of fuch leading Queftions as are in themfelves very eafy. And for that Reafon I have inferted a Collection of feveral Queftions; wherein there is great Variety.

Having got fo clear an Underffanding of the Queftion propofed, as to place down all the Quantities concerned in their due Order, viz. all the fubftituted Letters, in fuch Order as their Nature requires; the next thing muft be to confider whether it be limited or not. That is, whether it admits of more Anfwers than one. And to difcover that, obferve the two following Rules.
R U L E I.

When the Number of the Quantities fought exceed the Number of the given Equations, the Queftion is capable of innumerable Anfwers.

$$
E X A M P L E
$$

Suppofe a Queftion were propofed thus; there are three fuch Numbers, that if the firft be added to the fecond, their Sum will be 22. And if the fecond be added to the third, their Sum will be 46. What are thofe Numbers?

Let the three Numbers be reprefented by three Letters, thus? call the firft $a$, the fecond $a$, and the third $y$

Then $\left\{\begin{array}{l}a+e=22 \\ e+y=46\end{array}\right\}$ according to the Queftion.
Here the Number of Quantities fought are three, $a, c, y$, and the Number of the given Equations are but two. Therefore this Queftion is not limited, but admits of various Anfwers; becaufe for any one of thofe three Letters you may take any Number at Pleafure, that is lefs than 22. Which with a little Confideration will be very eafy to conceive.

$$
\text { R U L E } 2 .
$$

When the Number of the given Equations (not depending upons one another) are juft as many as the Number of the Quantities fought; then is the 2 uefion truly limited, viz. each Quantity $^{2}$ fought bath but one fingle Value.

As for Inftance, let the aforefaid Queftion be propofed thus. There are three Numbers ( $a, e$, and $y$, as before); if the firft be added to the fecond, their Sum will be 22 ; if the fecond be added
Chap. 5. Of Reducing 价uations. $\quad 177$
to the third, their Sum will be 46 ; and if the firft be added to the third, their Sum will be 36. What are the Numbers? That is, $a+e=22 . e+y=46$. and $a+y=36$. Now the Queftion is perfectly limited, each fingle Quantity having but one fingle Value, to wit $a=6, e=16$, and $y=30$.
N. B. If the Number of the given Equations exceeds the Number of the Quantities fought; they not only limit the Queftion, but oftentimes render it impoffible, by being propofed inconfiffent one to another.

Having truly ftated the Queftion in it's fubfituted Letters, and found it limited to one Anfwer (or at leaft fo bounded as to have a certain determinate Number of Anfwers), then let all thofe fubftituted Letters be fo ordered or compared together, either by adding, fubftracting, multiplying, or dividing them, $\xi^{\circ} c$. according as the Nature of the Queftion requires, until all the unknown Quantities except one, are caft off or vanifhed ; but therein great Care muft be taken to keep them to an exact Equality; and when that unknown Quantity, or fome Power of it (as Square, Cube, $E^{\circ}$ c.) is found equal to thofe that are known; then the Queftion is faid to be brought to an Equation, and confequently to a Solution, viz. fitted for an Anfwer.

But no particular Rules can be prefcribed for the cafting off, or getting away Quantities out of an Equation ; that Part of the Art is only to be obtained by Care and Practice. And when that is done, it generally happens fo, that the unknown Quantity which is retained in the Equation, is fo mixed and entangled with thofe that are known, that it often requires fome Trouble and Skill to bring it (or it's Powers, $\varepsilon^{\circ} c$.) to one Side of the Equation, and thofe that are known to the other fide; (ftill keeping them to a juft Equality) which the ingenious Mr Scooten in his Principia Mathefeos Univerfalis, calls Reduction of Equations.

The Bufinefs of reducing Equations (as of moft, if not all Algebraick Operations) is grounded and depends upon a right Application of the five Axioms propofed in Page 146, and therefore, if thofe Axioms be well underfood, the Reafon of fuch Operations muft needs appear very plain, and the Work be eafily performed; as in the following Sections.

## Sect. i. Of Reducion by gooition.

REDUCTION by Addition is grounded upon Axiom $\mathbf{I}$. and is only the tranfpofing (viz. the removing) of any Ne gative Quantity from either Side of an Eiquation to the other Side, with the Sign + before it; as in thefe

$$
E X A M P L E S
$$

| Suppofe | 1 | $a-b=d$ | Again, |
| ---: | ---: | ---: | ---: |
| Then | 2 | $a=d+b$ | Let |
| For | 1 | $a a-d=c-a a$ |  |
| 3 | $b=d$ | $1+d$ | 2 |
| $1+3$ | $a a=c-a a+d$ |  |  |
| 4 | $a=d+b$ | $2+a c$ | 3 |



| Let | $a a-d c-b=d d-2 b a$ |  |
| ---: | :--- | :--- |
| $\mathbf{1}+b$ | 2 | $a a-d c=d d-2 b a+b$ |
| $+d c$ | 3 | $a a=d d-2 b a+b+d c$ |
| $+2 b a$ | 4 | $a a+2 b a=d d+b+d c$ |


| $\quad$ Suppofe | 1 | $2 d a-d=c c-3 b a a-a a a$ |
| :--- | :--- | :--- |
| $1+a a a$ | 2 | $a a a+2 d a-d=c i-3 b a a$ |
| $2+3 b a a$ | 3 | $a a a+3 b a+2 d a=d=c c$ |
| $3+d$ | $4 a a+3 b a a+2 d a=c c+d, \& \mathrm{c}$. |  |

## Sect. 2. Of Reduction by Sillifactiant.

REDUCTION by Subfraction is grounded upon Axiom 2, and is performed by tranfpofing (or removing) any Affirmative Quantity from either Side of the Equation, to the other Side, with the Sign - before it; as in thefe

$$
E X A M P L E S
$$

$\left.\left.\begin{array}{r|r|r|r|r}\text { Suppofe } & 1 & a+b-d & \text { Let } & 1\end{array} \right\rvert\, \begin{array}{l}3 a+4=6+a \\ \text { And } \\ 1-2\end{array}\right)$

$$
\begin{array}{r|r|l}
\text { Suppofe } & \mathrm{I} a \mathrm{a}+d c+b=d d+2 b a \\
1-2 b a & 2 & a a-2 b a+d c+b=d d \\
2-d c & 3 & a a-2 b a+b=d d-d c \\
3-b & 4 & a a-2 b a=d d-d c-b
\end{array}
$$

$$
\begin{array}{l|l|l}
\hline \text { Let } & \text { I } & a a a+d=c c+3 b a a+2 d a \\
\mathbf{1}-3 b a a & 2 & a a a-3 b a a+d=c c+2 d a \\
\mathbf{2 - 2 d a} d & 3 & a a a-3 b a a-2 d a+d=c c \\
3-d & 4 a a-3 b a a-2 d a=c c-d \\
\hline
\end{array}
$$

## Sect. 3. Of Reduction by Spultiplicationt.

FRACTIONAL Quantities, in any Equation, are brought into whole Quantities by multiplying every Term in the Equation with the Denominators of the Fractions, por Axiom 3; as in thefe

$$
E X A M P L E S \text {. }
$$

Suppofe $\left\lvert\, \begin{aligned} & \text { I } \\ & \text { Then } \\ & 2\end{aligned} \begin{aligned} & \frac{a}{5}=6 \\ & a=6 \times 5=30 . \text { For } \frac{a}{5} \times 5=\frac{5 a}{5}=a .\end{aligned}\right.$

| Let | $\mathbf{1}$ | $3 a=\frac{d c}{2 b}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{I} \times 2 b$ | 2 | Suppofe | 1 | $a=\frac{d d}{a-b}$ |

Suppore $\mid$ i $\left\lvert\, \frac{a a}{b}+c+f=\frac{d x}{a}\right.$

| $\mathbf{1} \times b$ | 2 | $a a+b c+b f=\frac{a \times b}{a}$ |
| :--- | :--- | :--- |
| $2 \times a$ | 3 | $\begin{array}{l}a a a+b c a+b f a=d \times b\end{array}$ |

Suppore $|\mathbf{I}| \frac{a a a}{a a-b b}=\frac{b a-b b}{a+b}$
$1 \times \overline{a a-b b}, a a a=\frac{b a a a-b b a a-b b b a+b b b b}{a+b}$


## Sect. 4. Of Reduction by Dinifialt.

WHEN any Quantity (either known or unknown) is in every Term of an Equation, if the whole Equation be divided by that Quantity, it will be reduced into lower Terms, per Axiom 4, as in thefe following Examples.

$$
\text { A. } 2 \quad E X A M P L E S_{3}
$$

## EXAMPLES.

| Suppofe | $\mathbf{1}$ | $b a a+b c a=b c d$ | Let | $\mathbf{1}$ | $a a=7 a$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1} \div b$ | $\mathbf{2}$ | $a a+c a=c d$ | $\mathbf{1} \div \mathbf{1} a$ | 2 | $a=7$ |

Let $|\mathbf{I}| f f a a+f f c a a-f f a=f f d a+f f d d a$ $1 \div f f \quad 2 \quad a a+c a a-a=d a+d d a$ $2 \div a \quad 3 \mid a+c a-\mathrm{I}=d+d d$

Or when the unknown Quantity is multiplied (viz. joined) with any that is known; let the whole Equation be divided by the known Quantity, that fo the unknown may be cleared; as in thefe

$$
E X A M P L E S .
$$



| Suppofe | 1 <br> $\mathbf{1} \div b a$ <br> $\div b a-2 b b a a=b d a+c b a$ <br> 2 | $b a a-2 b a=d+c$ |
| :---: | :--- | :--- |
| $2 \div b$ | 3 | $a a-2 a=\frac{d+c}{b}$ |

Let $|$| 1 | $49 d a a+42 a a=7 b c a+21 c a$ |
| :--- | :--- |

$1 \div 72^{1} \mid 7 d a a+6 a a=b c a+3 c a$
$2 \div a 37 d a+6 a=b c+3 c$
$\underline{3 \div a|4| a=\frac{b c+3 c}{7 d+6}}$

## Sect. 5. Of Reducion by $\mathfrak{F l m b o l t t i o n . ~}$

WHEN there happens to be an Equation, between any homogeneal or like Surds, take a wav the radical Signs from the Quantities, and they will become rational; as in thefe

$$
E X A M P L E S
$$

Suppofe $|\boldsymbol{1}| \sqrt{ } a=\sqrt{d+c} \mid$ Let $\left.|1|^{3} \sqrt{ } a a=\sqrt[3]{d b+b c}\right\}$ perSect. 4 .

Or if one Side of the Equation confifts of Surd Qunntities, and the other Side be rational, then involve the rational Quantities to the

Chap. 5. Of Reiucing Equationg.
the fame Power (or Height) with the Index of the Surd, and take a way the radical Sign; as in there

$$
E X A M P L E S .
$$




## Sect. 6. Of Reduction by ©

WHEN any fingle Power of the unknown Quantity is on one Side of an Equation; evolve both Sides of the Equation, according as the Index of that Power denotes, and their Roots will be equal; as in thefe

$$
E X A M P L E S
$$


Or if any compound Power of the unknown Quantity be on one Side of the Equation (that hath a true Root of it's kind) evolve both Sides of the Equation, and it will be depreffed into lower Terms; as in there

$$
E X A M P L E S
$$

| Suppore | $\begin{array}{l}1 \\ \mathrm{I} \\ \mathrm{I} \\ \mathbf{2} \\ 2\end{array}$ | $\begin{array}{c}a a+2 b a+b b=d d \\ a+b=d\end{array}$ | $\begin{array}{c}a a-2 b a+b b=d d c c \\ a-b=d c\end{array}$ |
| :---: | :---: | :---: | :---: |

Here follow a few Examples of clearing Equations, wherein all the foregoing Reductions are promifcuounly ufed, as Occafion requires.

$$
E X A M P L E
$$

| Suppofe | 1 | $\frac{a a+c-d}{4}=\frac{g-a a}{b}$, what is $a=$ to? |
| :---: | :---: | :--- |
| $1 \times \overline{4}$ | 2 | $a a+c-d=\frac{4 g-4 a a}{6}$ |


| $2 \times b$ | $b a a+b c-b d=4 g-4 a a$ |  |
| ---: | :--- | :--- |
| $3+4 a a$ | 4 | $b a a+4 a a+b c-b d=4 g$ |
| $4+b d$ | 5 | $b a a+4 a a+b c=4 g+b d$ |
| $5-b c$ | 6 | $b a a+4 a a=4 g+b d-b c$ |
| $6 \div \overline{b+4}$ | 7 | $a a=\frac{4 g+b d-b c}{b+4}$ |
| $7 \omega^{2}$ | 8 | $a=\sqrt{\frac{4 g+b d-b c}{b+4}}$ as was required. |

$$
\text { E } X A M P L E
$$



$$
E X A M P L E 3 .
$$

Suppofe $\left|\begin{array}{l}1 \otimes^{2}\end{array}\right| \begin{aligned} & \sqrt{\frac{a a+3 b b}{4}}-\sqrt{\frac{a a-3 b b}{4}}=\sqrt{\frac{b a a}{c}: a=}=\text { ? } \\ & \begin{array}{l}\frac{a a+3 b b}{4}-2 \sqrt{\frac{a a+3 b b}{4}} \times \sqrt{\frac{a a-3 b b}{4}} \\ :+\frac{a a-3 b b}{\frac{4}{a^{4}-9 b^{4}}}=\frac{b a a}{c}\end{array} \\ & \frac{b a a}{}\end{aligned}$
That is

$$
33^{\frac{a}{2}}-\sqrt{\frac{\frac{4}{a^{4}-9 b^{4}}}{4}}=\frac{b a a}{c}
$$

For
And
Then
$3+\sqrt{2} \mathrm{cc}$.

$$
4 \frac{a a}{2}=\frac{b a a}{6}+\sqrt{\frac{4}{a^{4}-9 b^{4}}} 4
$$

| $\left.4-\frac{b_{a} a}{c} \right\rvert\,$ | 5 | $\frac{a a}{2}-\frac{h a a}{c}=\sqrt{\frac{a^{+}-9 b^{4}}{4}}$ |
| :---: | :---: | :---: |
| $50^{2}$ | 6 | $\frac{a^{4}}{4}-\frac{b a^{4}}{c}+\frac{b b a^{4}}{c c}=\frac{a^{4}-9 b}{}$ |
|  |  |  |
| - | 7 | $\overline{4}+\frac{c}{c}=\frac{}{4}$ |
| $7 \pm$ | 8 | $\frac{b b a^{4}}{c c}+\frac{9 b^{4}}{A}=\frac{b a^{4}}{}$ |
| $8 \div b$ | 9 | $\frac{b a^{4}}{c c}+\frac{9 b^{3}}{4}=\frac{a^{4}}{6}$ |
| $9 \times 66$ | 10 | $b a^{4}+\frac{9 c c b^{3}}{4}=c a^{4}$ |
| $10 \times 4$ | 11 | $4{ }^{4} a^{4}+9 c c b^{3}=4 c a^{4}$ |
| 11-4ba+ | 12 | $9 c c b^{3}=4 c a^{4}-4 b a^{4}$ |
| ${ }^{12} \div$ | 13 | $\begin{aligned} & a a a a=\frac{9 c c b^{3}}{4 c-4 b} \\ & \frac{4 c-4 b \times a^{4}=4 c a^{4}-4 b a^{4}}{} \end{aligned}$ |
| $13 \mathrm{ws}^{2}$ | 14 | $a a=\sqrt{\frac{9 c b^{3}}{4 c-4 b}}$ |
| $14 \mathrm{~m}^{2}$ | 15 | $a=V: \sqrt{ } \frac{9 c c b^{3}}{4 c-4 b^{2}}$, as was required. |

By Help of there Reductions (properly applied) the unknown Quantity ( $a$ ) or it's Powers, are cleared and brought to one Side of an Equation; and if the unknown Quantity (a) chance to be equal to thofe that are known, the Queftion is anfwered: as in the firft Example of Sect. 1, and 2. Or if any fingle Power of the unknown Quantity (a) is found equal to thofe that are known, then the refpective Rout of the known Quantities is the Anfwer; as in the firft four Examples of Sect. 6, \&cc.

But when the Powers of the unknown Quancities are either mixed with their Root, as $a a+b a=d d, \& c$; or do confift of different Powers, as $a a a+b a a=d d, \& \mathrm{c}$ : Then they are called Affected, or Adfected Equations, which require other Methods to refolve them ; viz. to find out the Value of (a) as fhall be fhewed further on.

CHAP.

## C H A P. VI.

## Of 1pzopoztional ILuntitieg; botb geitbmetical, Geametrical, and Sufical.

WHAT hath been faid of Numbers in Aritbmetical Progreffion, Chap. 6. Part I. may be eafily applied to any Series of Homogeneal or like Quantities.

## Sect. 1. Of duantiticg in aritbmetical 1pzogzefion.

$T H O S E$ Quantities are faid to be in the moft fimple or natural Progreffion, that begin their Series of increafe or decreafe with a Cypher:
Thus $\left\{\begin{array}{l}0: a: 2 a: 3 a: 4 a: 5 a: 6 a: \& c \text {. increafing. } \\ 0:-a:-2 a:-3 a:-4 a:-5 a:-6 a: \& c \text {. decreafing. }\end{array}\right.$ Or Univerfally, putting $a$ the firft Term in the Progreffion, and $e$ the common Excefs or Difference.
Then $\left\{\begin{array}{l}a: a+e: a+2 e: a+3 e: a+4 e: a+5 e: a+6 e: 8 \mathrm{zc} . \\ a: a-e: a-2 e: a-3 e: a-4 e: a-5 e: a-6 e: 8 c .\end{array}\right.$
In the firft of thefe Series it is evident, that if there be but three Terms; the Sum of the Extreams will be double to the Mean.

As in thefe, $0: a: 2 a:$ or, $a: 2 a: 3 a:$ or, $2 a: 3 a: 4 a$, \&c. viz. $2 a:+0=a+a$ : or, $a+3 a=2 a+2 a, 8$ c.

Alfo, in the fecond Series, either increafing or decreafing, it is evident, that if the Terms be $a: a+e: a+2 e, \& c$. increafing; then $a+a+2 e$, viz. $2 a+2 e$ the Sum of the Extreams, is double to $a+e$ the Mean, or if they be $a: a-e: a-2 e, \& c$. decreafing ; then $a+a-2 e:$ viz. $2 a-2 e$, the Sum of the Extreams, is double to $a-e$ the Mean. And fo it will be in any other three of the Terms. Secondly, if there are four Terms; then the Sum of the two Extreams, will be equal to the Sum of the two Means; as in theefe, $a: a+e: a+2 e: a+3 e$, in the Series increafing; here $a+a+3 e=a+e+a+2 e$.

Alfo in thefe, $a: a-e: a-2 e: a-3 e$, in the Series decreafing; here $a+a-3 e=a-e+a-2 e, \& x c$. in any other four Terms.
Confequently, If there are never fo many Terms in the Series, the Sum of the two Extreams will always be equal to the Sum
of any two Means, that are equaliy diffant from thofe Extreams. As in thefe, $a: a+e: a+2 e: a+3 e: a+4 e: a+5 e: \& c$. Here $a+a+5 e=a+e+a+4 e=a+2 e+a+3 e$, \&cc. And if the Number of Terms be odd, the Sum of the two Extreams will be double to the middle Term, छfc. as in Corol. x. Chap. 6. before-mentioned.

## CONSECTARYi.

Whence it follows, (and is very eafy to conceive) that if the Sum of the two Extreams be multiplied into the Number of all the Terms in the Series, the Product will be double the Sum of all the Series.

Now for the eafier refolving fuch Quefions as depend upon thefe Progreffonal $)^{\text {Quantities. }}$
$\left\{\begin{array}{l}a \\ y \\ e \\ N \\ S\end{array}\right.$ = the firf Term, as before. $y=$ the laft Term.
Let $\left\{\begin{array}{l}e \\ = \\ \text { the common Excefs, } \Xi_{c} \text {. as before. }\end{array}\right.$
$N=$ the Number of all the Terms.
$S=$ the Sum of all the Series, viz. of all the Terms.
Then will $\overline{a+y} \times N=2 S$, by the precedent Confectary: that is, $N a+N y=2 S$. Confequently $\frac{N a+N y}{2}=S$, the Sum of all the Series, be the Terms never fo many. Thirdly, In there Series it is eafy to perceive, that the common Difference (e) is fo often added to the laft Term of the Series; as are the Number of Terms, except the firft ; that is, the firft Term (a) hath no Difference added to it, but the laft Term hath fo many times (e) added to it, as it is diftant from the firtt.

Confequently, the Difference betwixt the two Extreams, is only the common Difference (e) multiplied into the Number of all the Terms lefs Unity or $\mathbf{1}$. That is, $\overline{N-1} \times e=y-a$, the Difference betwixt the two Extreams, viz. Ne-e=y-a.

## CONSECTARY 2.

Whence it follows, that if the Difference betwixt the two Extreams be divided by the Number of Terms lefs I, the Quotiont will be the common Difference of the Series.

$$
\text { To wit, } \frac{y-a}{N-1}=e
$$

Now by the Help of thefe two Conlećtaries, if any three of the aforefaid five Parts (viz. a. y. e. N.S.) be given; the other two may be eafily found.


In like Manner you may proceed to find out any of the five Quantities (a.e.y. N.S.) otherwife, viz. by varying or comparing thofe Equations one with another, you may produce new
Chap. 6. Of Pzopattinal Duantities. 187

Equations with other Data in them ; the which I fhall here omit purfuing, and leave them for the Learner's Practice.

## Seĉ. 2. Of Dunntitiss in Geometrical Proportion.

GEOMETRICAL Proportion continued has been already defined in Sect. 2. Chap. 6. Part 1. And what is there faid concerning Numbers in $\because$, may eafily be applied to any fort of Homogeneal Quantities that are in $\div$.

The moft natural and fimple Series of Geometrical Proportionals, is when it begins with Unity or 1.

As r.a.aa.aaa. aaaa $\cdot a^{5} \cdot a^{6}$, \&x. in $\because \because$ For 1:a::a:aa::aa:aaa::aaa:aaaa, \&cc.
Or $a \cdot b \cdot \frac{b h}{a} \cdot \frac{b b b}{a a} \cdot \frac{b b b b}{a a a} \cdot \frac{b s}{a^{+}}$, \&cc. are Terms in $\because \because$
For $a: b:: b: \frac{b b}{a}:: \frac{b b}{a}: \frac{b b b}{a a}:: \frac{b b b}{a a}: \frac{b^{+}}{a^{3}}:: \frac{b^{+}}{a^{3}}: \frac{b^{5}}{a^{+}}, \&<c$.
That is, when all the middle Terms betwixt the two Extreams are both Confequents and Antecedents, that Series is in Geometrical Proportion continued. Therefore in everySeries of Quantities in $\div$ all the Terms except the laft are Antecedents; and all the Terms except the firft are Confequents. But univerfally putting $a$ the firft Term in the Series, and $e$ the Ratio, viz. the common Multiplier, or Divifor; then it will be

$$
\text { a. ae. aee. aeec.acece. } a e^{5} \cdot a e^{6} \cdot \text { \&rc. in } \div
$$

Or $a \cdot \frac{a}{e} \cdot \frac{a}{e e} \cdot \frac{a}{e \ell e} \cdot \frac{a}{e e e e} \cdot \frac{a}{e^{i}} \cdot \& c$ are in $\div \frac{\pi}{10}$ decreaf.
For $a: a_{e}:: a_{e}: \frac{a_{a e e}}{a}=a e e$, \&cc.
And $a: \frac{a}{e}:: \frac{a}{e}: \frac{a}{a e e}=\frac{a}{e e} a: \frac{a}{e}:: \frac{a}{e e}: \frac{a}{e e e}, \& c$.
I. In any of thefe Series it is evident, that if three Quantities are in $\div \div$, the Rectangle of the two Extreams will be equal to the Square of the Mean; as in thefe, $a: a_{e}, a c e$, here $a \times a \in e$ $=a \varepsilon \times a \rho,=a a<e, \&<c$.

Os $a \cdot \frac{a}{e} \cdot \frac{a}{e c}$; here alfo $a \times \frac{a}{e b}=\frac{a}{e} \times \frac{a}{e}=\frac{a}{e c}, \& c c$.
II. If four Quantities are in $\because$ the Rectangle of the Extreams will be equal to the Rectangle of the Means.

As in thefe, $a . a e . a c e . a e c e ;$ here $a \times a e^{3}=a e \times a c e$.

Confequently, If there are never fo many Terms in the Series of $\div$, the Rectangle of the Extreams will be equal to the Rectangle of any two Means that are equally diftant from thofe Extreams.

As in thefe, a.ae.aee. acee. $a e^{4} \cdot a e^{5}$
viz. $a e^{5} \times a=a e^{4} \times a e$. Or $a e^{5} \times a=a e e e \times a c e=a a e^{5}$
III. If never fo many Quantities are in $\div$ it will be, as any one of the Antecedents is to it's Confequents; fo is the Sum of all the Antecedents, to the Sum of all the Confequents.
As in $\left\{\begin{array}{c}a, a e, ~ a e e . a c e e, ~ a e e_{1}^{p e e}, ~ a e^{5}, \text { \&ic. increafing. } \\ a \quad a \quad a \\ a\end{array}\right.$ thefe, $\left\{a \cdot \frac{a}{e} \cdot \frac{a}{e \ell} \cdot \frac{a}{e e_{e}} \cdot \frac{a}{e e e \theta} \cdot \frac{a}{e^{5}}\right.$, \&zc. decreafing. $a: a e:: a+a e+a e e+a e^{3}+a e^{4}: a e+a c e+a e^{3}+a e^{4}+a c s$ Or $a: \frac{a}{e}:: a+\frac{a}{e}+\frac{a}{e e}+\frac{a}{e^{3}}+\frac{a}{e r}: \frac{a}{e}+\frac{a}{e}+\frac{a}{e e}+\frac{a}{e^{3}}$ $+\frac{a}{e^{1}}+\frac{a}{e^{3}}$ viz. $a \times \overline{a e+a e e+a e^{3}+a e^{4}+a e^{5}}=a e$ $\times \overline{a+a e+a e c+a e^{3}+a e^{4}}$.

That is, the Rectangle of the Extreams is equal to the Rectangle of the Means; per Second of this Sect.

Note, The Ratio of any Series in $\div$ increafing, is found by dividing any of the Confequents by it's Antecedent.

Thus, a) ae (e Or ae) aee (e, \&c.
But if the Series be decreafing, then the Ratio is found by dividing any of the Antecedents by it's Confequent.

Thus, $\left.\frac{a}{e}\right) a\left(e \operatorname{Or} \frac{a}{e c}\right) \frac{a}{e}(e, \& c$.

## CONSECTARY.

Thefe Things being premifed, fuch Equations may be deduced from them, as will folve all fuch Quefions as are ufually propofed about Quantities in Geometrical Projortion. In order to that,
$\operatorname{let}\left\{\begin{array}{l}a=\text { the firf Term. } \\ e=\text { the common Ratio. } \\ y=\text { the laft Term. } \\ S=\text { the Sum of all the Terms. }\end{array}\right\}$ afore.
Then $S-y=$ the Sum of all the Antecedents.
And $S-a=$ the Sum of all the Confequents.

| Analogy. | 1 <br> 1 <br> $\because$ | $a: a e: S-y: S-a$ per III. of this Sect. <br> $2 \div a-a a=a e S-a e y$ <br> 3 |
| ---: | ---: | :--- |
| $3+e y$ | $S-a=e S-e y$ |  |
| $4-S$ |  | $S+e y-a=e S$ |
| 5 | $e y-a=e S-S$ |  |
| $5 \div \overline{e-1}$ | 6 | $\frac{y e-a}{e-1}=S$, the Sum of all the Series. |
| $3 \div \overline{S-y}$ | 7 | $\frac{S-a}{S-y=e, \text { the common Ratio. }}$ |
| $5+a$ | 8 | $e y=e S+a-S$ |
| $8 \div e$ | 9 | $\frac{e S+a-S}{e}=y$, the laft Term. |
| $4+a$ | 10 | $S+e y=e S+a$ |
| $10-e S$ | 11 | $S+e y-e S=a$, the firf Term. |

Note, The $\because$ fet in the Margin at the fecond Scep, is inftead of ergo; and imports that the Rectangle of the two Extreams in the firlt Step, is equal to the Rectangle of the Means. And fo for any other Proportion.

## Sect. 3. Of Matmanical Proportion.

HARMONICAL or Mufical Proportion is, when of three Quantities (or rather Numbers) the firf hath the fame Ratio to the third, as the Difference between the firft and fecond, hath to the Differehce between the fecond and third. As in thele following.

Suppofe $a, b, c$, in Mufical Proportion.

$$
\begin{array}{l|l|l}
\text { Then } & \left.\begin{array}{l}
1 \\
a
\end{array} \right\rvert\, c:: b-a: c-b \\
2 & 6-c a=a c-b a
\end{array}
$$

| $2+c a$ | 3 | $c b=2 a c-b a$ |
| ---: | :--- | :--- |
| $3 \div \frac{c b}{2 c-b}$ | 4 | $\frac{c b}{2 c-b}=a$, the firft Term. |
| $3+b a$ | 5 | $2 a c=c b+b a$ |
| $5 \div c+a$ | 6 | $\frac{2 a c}{c+a}=b$, the fecond Term. |
| $5-c b$ | 7 | $2 a c-c b=b a$ |
| $7 \div \frac{2 a-c}{2 a-c}$ | 8 | $\frac{b a}{2 a-b}=c$, the third Term. |

If there are four Terms in Mufical Proportion, the firft hath the fame Ratio to the fourth, as the Difference between the firft and fecond hath to the Difference between the third and fourth.

That is, let $a, b, c, d$, be the four Terms, $\mathcal{V}^{\circ} c$.

$$
\begin{array}{r|l|l}
\text { Then } & \begin{array}{l}
a: d:: b-a: d-c \\
1 \\
1
\end{array} & 2 \\
d b-d a=d a-c a \\
2-d a & 3 & d b=2 d a-c a \\
3 \div \overline{2 d-c} & 4 & \frac{d b}{2 d-c}=a \\
3 \div d & 5 & b=\frac{2 d a-c a}{d} \\
3+c a & 6 & d b+c a=2 d a \\
6-d b & 7 & c a=2 d a-d b \\
6 \div a & 8 & c=\frac{2 d a-d b}{a} \\
7 \div \frac{7 \div-b}{2 a-b} & 9 & \frac{c a}{2 a-b}=d .
\end{array}
$$

## C H A P. VII.

Of Proportion Dighunt, and bow to turn Equations into Rinalomies, \&c.
PROPORTION Disjunct, or the Rule of Three in Num-
bers, is already explained in Cbap. 7. Part 1. And what hath been there faid, is applicable to ail Homogeneous Quantities, viz. of Lines to Lines, $E^{\circ}$ c.

## S E C T. 1.

IF four Quantities, (viz. either Lines, Superficies, or Solids) be proportional : the Rectangle comprehended under the Extreams, is equal to the Rectangle comprehended under the two Means. (16 Euclid 6.)

For Inffance, Suppofe, $a, b, c, d$, to reprefent the four Homogeneal Quantities in Proportion, viz. $a: b:: c: d$; then will $a d=b c$. For fuppofe $b=2 a$, then will $d=2 c$, and it will be $a: 2 a:: c: 2 c$. Here the Ratio is 2. But $a \times 2 c=2 a \times c$. viz. $2 c a=2 a c$. Or fuppofe $b=3 a$ then will $d=3 c$, and it will be $a: 3^{a}:: c: 3 c$. Here the Ratio is 3 . But $a \times 3^{c}$ $=3 a \times c$. viz. $3 c a=3 a e$. Or univerflly putting efor the Ratio of the Proportion, viz. making $b=a e$, then will $d=c e$, and it will be $a: a e:: c: c e$. But $a \times c e=a e \times c$, viz. ace $=a e c$. Confequently, $a d=b c$ which was to be proved.

Whence it follows, that if any three of the four ploportional Quantities be given, the fourth may be eafily found; thus,


If four Quantities are Proportionals, they will alfo be Proportionals in Alternation, Inverfion, Compofition, Divifion, Converfion, and Mixtly. Euclid 5. Def. 12, 13, 14, 15, 16.

That

That is, if $\mid$ $\mid a: b:: c: d$ be in direct Proportion, as before.
Then $2 a: c:: b: d$, alternate. For $a d=b c$.
And
Alfo
$b: a:: d: c$, inverted. For $a d=b c_{0}$
$a+b: b:: c+d: d$; compounded.
$4 \because$
Or $6 \because$
Again,
$8 \because$
Or
$10 \because$ II $a d-c d=b c-c d$, that is, $a d=b c$.
And $12 a: b \pm a:: c: d \pm c$, converted.
$12 \because 13 a d \pm a c=b c \pm a c$, that is, $a d=b c$.
Laftly $14 a+b: a-b:: c+d: c-d$, mixtly.
$14 \because 15 a c-a d+b c-b d=a c+a d-b c-b d$.
$15 \pm\left. 16\right|_{2 b c}=2 a d$, that is, $a d=b c$; as at firft.
Note, What has been here done about whole Quantities in Simple Proportion, may be eafily perform'd in Fractional Quantities, and Surds, E'c.

For Inftance, If $\frac{a b}{c}: \frac{d-c}{f}:: \frac{d+c}{c}$, and if it be required to find the fourth Term, it will be $\frac{d d-c c}{f_{c}}$ the Rectangle of the Means; which being divided by the firft Extream $\frac{a b}{c}$ will become $\left.\frac{a b}{c}\right) \frac{d d-c c}{f c}\left(\frac{d d c-c c c}{a b f c}=\frac{d d-c c}{a b f}\right.$ the fourth Term.

Or if $b: \sqrt{b d+b c}:: \sqrt{b c+b c}:$ to a fourth Term. Then is, $\sqrt{b d+b c} \times \sqrt{b d+b c}=b d+b c$ the Rectangle of the Means; and $b) b d+b c(d+c$ the fourch Term. That is, $b: \sqrt{b d+b c}$ $:: \sqrt{b d+b c}: d+c, \& c$.

## Sect. 2. Of Duplicate and Criplicate poppoztion.

THE Proportions treated of in the laft Section, are to be underftood when Lines are compared to Lines, and Superficies to Superficies; or Solids to Solids, viz. when each is compared to that of it's like Kind, which is only called Simple Proportion.

## Chap. 7.

But when Lines are compared to Superficies, or Lines are compared to Solids, fuch Comparifons are diftinguifhed from the former, by the Names of Duplicate, and Triplicate, \&c. Proportions; fo that Simple, Duplicate, and Triplicate, E ${ }^{\circ}$. Proportions are to be underftood in a different Senfe from Simple, Double, Treble, $\mathcal{E}^{\circ}$. Proportions, which are only as 1, 2, 3, $\mathfrak{\vartheta}^{\circ}$. to I; but thofe of Simple, Duplicate, Triplicate, E®c. Proportions, are thofe of $a . a a . a a a ., \& z c$. to I. Or if the Simple Proportions be that of $a$ to $b$, whofe Ratio or Exponent is $\frac{a}{b}$ or $\frac{b}{a}$.
Then $\frac{a}{b} \times \frac{a}{b}=\frac{a a}{b b}$ is the Exponent of the Du-7 plicate.

$$
\text { And } \frac{a}{b} \times \frac{a}{b} \times \frac{a}{b}=\frac{a^{3}}{b^{3}} \text { is the Exponent of the }
$$ Triplicate Proportions, Evc.

And if there are three, four, or more Quantities in $\because \because$, as 1.a.aa.aaa. $a^{4} \cdot a^{5}, \& x$. (as in the firft Series, Sect. 2. of the laft Chapter.) Then, that of the firft to the third, fourth, and fifth, Egr. (viz. 1 to $a a, a a a \cdot a^{4} \cdot a^{5}$ ) is Duplicate, Triplicate, Quadruplicate, $\xi^{\circ}$ c. of the firft to the fecond (viz. of I to a); and by Inverfion, that of the third, fourth, fifth, is Duplicate, Triplicate, $\delta^{\circ} c$. of that of the fecond to the firf ( $a$ to I) per Def. 10. Eucl. 5. But the Name of there Proportions will appear more evident, and be ealier underftood when they are applied to Practice, and illuftrated by Geometrical Figures, further on.

## Sect. 3. How to turn Equations into Allalogixg.

FROM the firf Section of this Chapter, it will be eafy to conceive how to turn or diffolve Equations into Analogies or Proportions. For if the Rećtangle of two (or more) Quantities, be equal to the Rectangle of two (or more) Quantities ; then are thofe four (or more) Quantities Proportional. By the 16 Eucl. 6. That is, if $a b=c d$, then is $a: c:: d: b$, or $c: a:: b: d$, \&ce. From whence there arifes this general Rule for turning Equations into Analogies.

RULE.

## R U L E.

Divide either Side of the given Equation (if it can be done) into two fuch Parts, or FaEtors, as being multiplied together will produce that Side again; and make thefe two Parts the two Extreams. Then divide the other Side of the Equation (if it can be done) in the fame Manner as the firft was, and let thofe two Parts or Factors be the two Means.

For Inftance, Suppofe $a b+a d=b d$. Then $a: b:: d: b+d$, or $b: a:: b+d: d, \& c$. Or taking $a d$ from both Sides of the Equation, and it will be $a b=b d$ - $a d$; then $a: d:: b-a: b$, or, $b: d:: b-a: a, \& c$.

Again, fuppofe $a a+2 a e=2 b y+y y$. Here $a$ and $a+2 e$ are the two Faclors of the firft Side in this Equation; for $\overline{a+2 e} \times a=a a+2 a e$.

Again, $y$ and " $2 b+y$ are the two Factors of the other Side; therefore, $a: y:: 2 b+y: a+2 e$, or $2 b+y: a+2 e:: a: y$, \&rc.

When one Side of any Equation can be divided into two Factors, as before, and the other Side cannot be fo divided, then make the Square Root of that Side either the two Extreams or the two Means. For Inftance, Suppofe $b c+b d=d a+g$, then $b$ : $\sqrt{d a+g}:: v^{\prime} d a+g: c+d$, or $\sqrt{d a+g}: b:: c+d: \sqrt{d a+g}, 8 \mathrm{c} c$.

## C H A P. VIII.

Of Subftitutiont, and the Solution of Amanatick Equation!.

## Sect. ı. Of Subltitution.

$W^{1}$ HEN new Quantities not concerned in the firft fating of any Queftion, are put inttead of fome that are engaged in it. that is called Subfitution. For Inftance, If inftead of $\sqrt{b c-d c}$ you put $z$, or any other Letter; that is, make $z=$ $\sqrt{b c-d c}$. Or fuppofe $a a+b a-c a+d a=d c$, inftead of $b-c$ $+d$ put $s$, or any other Letter not engaged with the Queftion, viz. $s=b-c+d_{2}$ then $a a \neq s a=d c$. That is, if $c$ be greater
Chap. 8. Of Guadatich Equattons. 195
than $b+d$, it is $a a-s a=d c$; but if $b+d$ be greater than $c$, then it is $a a+s a=d c$.

And this way of fubflituting or putting of new Quantities inftead of others, may be found very ufeful upon feveral Occafions; viz. in Order to make fome following Operations in the Queftion more eafy, and perhaps much fhorter than they would be without it, as ynu may obferve in fome Queftions hereafter propofed in this Tract.

And when thofe Operations, in which the fubftituted Quantities were affifiting or ufeful, are performed according as the Na ture of the Queftion required, you may then (if there be Occafion) bring the original or firft Quantities into the Equation, in the Place (or Places) of thofe fubftituted Quantities, which is called Reftitution, as you may fee further on.

## Sect. 2. The Solution of Dundantick C゙mationt.

WHEN the Quantity fought is brought to an Equality with thore that are known, and is on one Side of the Equation, in no more than two different Powers whofe Indices are double one to another, thofe Equations are called Quadratick Equations Adfected; and do fall under the Confideration of three Forms or Cafes.
$\left.\begin{array}{l}\text { Cafe 1. } a a+2 b a=d c . \\ \text { Cafe 2. } a a-2 b a=d c . \\ \text { Cafe 3. } 2 b a-a a=d c .\end{array}\right\}$ And $\left\{\begin{array}{l}a^{4}+2 b a^{2}=d c . \\ a^{4}-2 b a^{2}=d c . \\ 2 b a^{2}-a^{4}=d c .\end{array}\right.$
Alro $\left\{\begin{array}{l}a^{6}+2 b a^{3}=d c . \\ a^{6}-2 b a^{3}=d c . \\ 2 b a^{3}-a^{6}=d c .\end{array}\right\}$ And $\left\{\begin{array}{l}a^{8}+2 b a^{4}=d c . \\ a^{3}-2 b a^{4}=d c \\ 2 b a^{4}-a^{8}=d c .\end{array}\right\}$ \&ic.
When there happens to be more Terms in one of thefe Kind of Equations than two, and the highelf Power of the unknown Quantity is multiplied into fome known Co-efficients; you muft reduce them by Divifion; as in Sect. 4. of Chap. 5. and for the Fractional Quantities that may arife by thơe Divifions, fubftitute another Quantity doubled.

ForInfance, let $b a a+c a a-c a-d a=d c+c b$, then $a a-$ $\frac{c a-d a}{b+c}=\frac{d c+c b}{b+c}$. Make $\frac{c-d}{b+c}=2 x$, and if you please, C c 2
for
for $\frac{d c+c b}{b+c}$ put $z$. Then will $a a-2 x a=z$ be the new Equation, equal to the other, being now fitted for a Solution.

Now any of thefe three Forms of Equations being thus prepared for a Solution, may be reduced to fimple Powers by cafting off the fecond or lnweft Term of the unknown Quantity; which is done by Subftitution; thus, always take half the known Coeffisient, and add it to (Cafe r.) or fubfract it from (Cafe 2.) it's fellow Facior; and for their Sum, or Difference, Subftitute another Letter; as in thefe.

| Let | I | $a a+2 b a=d c$ Cafe I. |
| :---: | :--- | :--- |
| Put | 2 | $a+b=e=$ |
| $2 a^{2}$ | 3 | $a a+2 b a+b b=e e$ |
| $3-1$ | 4 | $b b=e e-d c$ |
| $4+d c$ | 5 | $e e=b b+d c$ |
| $5 \omega^{2}$ | 6 | $e=\sqrt{b b+d c}$ |
| 2 and 6 | 7 | $a+b=\sqrt{b b+d c}$, per Axiom 5. |
| $7-b$ | 8 | $a=\sqrt{b b+d c}:-b$ |

Again,

| Let | Again, |  |
| ---: | :--- | :--- |
| Put | $2 a-2 b a=d c$ Cafe 2. |  |
| 2 Qu | $a-b=e$ |  |
| 3 | $a a-2 b a+b b=e e$ |  |
| $3+1$ | 4 | $b b=e-d c$ |
| $4+d c$ | 5 | $e e=d c+b b$ |
| $5 w^{2}$ | 6 | $e=\sqrt{d c+b b}$ |
| 2 and 6 | 7 | $a-b=\sqrt{a c+b b}$ |
| $7+b$ | 8 | $a=b+\sqrt{d c+b b}$ |

In Cafe 3. From Half the known Co-efficient fubitract it's fellow Factor.


$$
5 w^{2}
$$

Chap. 8. Of Duabeatick ©quations.

| $5 \omega^{2}$ | 6 | $e=\sqrt{b b-d c}$ |
| ---: | ---: | :--- |
| 2 and 6 | 7 | $b-a=\sqrt{b b-d c}$ |
| $7+a$ | 8 | $b=a+\sqrt{b b-d c}$ |
| $8-\sqrt{\text { b }}$ \&c. | 9 | $a=b-\sqrt{b b-a c}$ |

And this Method holds good in thofe other Equations, wherein the highelt Powers are $a^{4}, a^{6}, a^{8}, \& c$. As, for inftance,

$$
\begin{array}{r|l|l}
\text { Let } & a^{6}+2 b^{3}=d c \quad \text { Cafe } \mathbf{I} . \\
\text { Put } & 2 & a^{3}+b=e \\
2 a^{2} & 3 & a^{5}+2 b a^{3}+b b=e e \\
3-\mathrm{I} & 4 & b b=e e-d c \\
4+c d & 5 & e e=b b+d c \\
5 \mathrm{wu}^{2} & 6 & e=\sqrt{b b+d c} \\
2 \text { and } 6 & 7 & a^{3}+b=\sqrt{b b+d c} \\
7-b & 8 & a^{3}=\sqrt{b b+d c}:-b \\
8 u^{3} & 9 & a=\sqrt[3]{1-\sqrt{b b+a c}:-b}
\end{array}
$$

The fame may be done with all the reft, Care being taken to add, or fubftract, according as the Cafe requires.

But all Quadratick Equations may be more eafily refolved by compleating the Square, which is grounded upon the Confideration of raifing a Square from any Binomial, or Refidual Root. (See Sect. 5. Chap. 1.) Viz. if $a+b$ be involved to a Square, it will be $a a+2 b a+b b$; and if $a-b$ be fo involved, it will be $a a-2 b a+b b$. Whence it is eafy to obferve, that $a a+2 b a=d c$ (Cafe 1.), and $a a-2 b a=d c$ (Cafe 2.), are imperfect Squares, wanting only $b b$ to make them compleat. And therefore it is, that it half the known Co-efficient be involved to the fecond Power, and the Square be added to both Sides of the Equation, the unknown Side will become a compleat Square.

Thus Let | $\mathbf{1}$ | $a a+2 b a=d c$ |
| ---: | ---: |
| $b b$ | $=b b$ |\(\left\{\begin{array}{r}Here half the Co-efficient <br>

2 b is b, which being fquared, <br>
is b b\end{array}\right.\) But
$\mathbf{I}+2{ }^{2} \quad 3 a+2 b a+b b=a+b b$ Cafe $\mathbf{I}$. $\left.3 \omega^{2}\right|_{4} \mid a+b=\sqrt{d c+b b}$, as lefore

Again.

$$
\begin{array}{r|l|l}
\text { Let } & \mathbf{I} & a a-2 b a=d c \\
\text { But } & 2 & \text { Cafe 2. } \\
\mathbf{1}+3 & 3 & a a-2 b a+b b=d c+b b \\
3 \omega^{2} & 4 & a-b=\sqrt{a c+b b}, \text { \&c. as before. }
\end{array}
$$

But in Cafe 3. you muft change the Signs of all the Terms in the Equation,

| Thus | $\mathbf{1}$ | $2 b a-a a=d c$ Cale 3. |
| :--- | :--- | :--- |
| $\mathbf{I} \pm$ | 2 | $2 a-2 b a=-d c$ |
| Then |  | $a a-2 b a+b b=b b-d c, \& c$. |

And this Method of compleating the Square, holds true in thofe other Equations.

| Viz. | $\mathbf{1}$ | $a a a a+2 b a a=d c$ Cafe $\mathbf{1}$. |
| ---: | :--- | :--- |
| For | 2 | $b b=b b$, as before. |
| $\mathbf{1}+2$ | 3 | $a a a a+2 b a a+b b=d c+b b$ |
| $3 w^{2}$ | 4 | $a a+b=\sqrt{d c-b b}$ |
| $4-b$ | 5 | $a a=\sqrt{a c+b b}:-b$ |
| 5 us $^{2}$ | 6 | $a=\sqrt{: \sqrt{d c+b b}:-b}$, and fo on for the reft. |


| Or let |  | as before, C |
| :---: | :---: | :---: |
|  |  |  |
| $1+2$ | 3 | $a^{6}+2 b a a a+b b=d c+b b$ |
| $1 \mathrm{Un}^{2}$ | 4 | $a a a+b=\sqrt{d c}+b b$ |
| $4-b$ | 5 | $a a a=\sqrt{d c+b b}:-b$ |
| $5 \mathrm{mj}^{3}$ |  | $a=\sqrt[3]{: \sqrt{d c+b b}:-b}$, \&c. |

## COROLLARY.

Hence it is evident, that whatfoever Method is ufed in foiving thefe (or indeed any otber) Equations, the Refult will fill be the fame, if the Work be true; as you,may obferve from the Operations of this Section: for both thefe Methods here propofed, give the fame Theorems in their refpective Cajes for the Value of $(a)$.

Thus, when $a a+2 b a=d c$, then
Theorem 1. $a=\sqrt{d i+b b}:-b$
And when $a a-2 b a=d c$, then
Theorem 2. $a=b+\sqrt{d c+b b}$
Again, when $2 b a-a a=d c$, then
Theorem 3. $a=b-\sqrt{b b-d c}$
The like Theorems may be eafily raifed for the reft.
If the known Co-efficients (of the fecond or loweft Term) be any fingle Quantity, as $a a+b a=d c$, \&ce. then is $\frac{1}{2} b$ it's Half, and $\frac{1}{4} b b$ will be the Square of that Half; that is, $\frac{1}{2} b \times \frac{1}{2} b=\frac{1}{4} b b$, and then the Work will ftand

| Thus | 1 | $a a+b a=d c$ |
| :---: | :--- | :--- |
| I $C a$ | 2 | $a a+b a+\frac{1}{4} b b=d c+\frac{1}{4} b b$ |
| $2 \omega^{2}$ | 3 | $a+\frac{1}{2} b=\sqrt{d c+1} \frac{1}{4} b b$ |
| $3-\frac{1}{2} b$ | 4 | $a=\sqrt{d c+\frac{1}{4} b b}:-\frac{1}{2} b$, and fo for the reff. |

Note, $C$ a placed in the Margin againft the fecond Step, fignifies that the imperfect Square $a a+b a$ in the firft Step, is there compleated, viz. in the fecond Step.

Now by the help of thefe Theorems, it will be eafy to calculate or find the Value of the unknown Quantity (a) in Numbers.

$$
E X A M P L E
$$

Suppofe $a a+2 b a=z$. Let $b=16$, and $z=4644$. then $a=\sqrt{z+b b}:-b$ per Theorem $\mathbf{1}$.
But $z+66=4644+256=4900$, and $\sqrt{ } 4900=70$
Cunfequently $a=70-16$. viz. $a=54$.
But every Adfected Equation, hath as many Roots (or rather Values of the unknown Quantity) either real or imaginary, as are the Dimenfions (viz. the Index) of it's higheft Power; and therefore the Quantity $a$, in this Equation, hath another Value either Affirmative or Negative; which may be thus found.

The given Equation is $a a+32 a=4644$, and it's Root $a=54$.
Let thefe two Equations be made equal or equated to 0 , viz. to Nothing.

Thus, $a a+32 a-4644=0$, and $a-54=0$.
Then divide the given Equation by it's firft Root, and the Quotient will fhew the fecond Value of $a$.

$$
\begin{gathered}
\text { Thus, } a-54=0) a a+32 a-4644=0(a+86=0 \\
\frac{a a-54 a}{+86 a-4444} \\
\frac{86 a-4644}{(0)}
\end{gathered}
$$

Hence the fecond Value of $a$ is $=-86$, or $86=-a$, which feems impoffible, viz. that an Affirmative Quantity fhould be equal to a Negative Quantity; yet even by this fecond Value of $a$, and the fame Co-efficient, the true (or firft) Equation may be formed

> | Thus, Let | $\mathbf{1}$ | $a=-86$ |
| ---: | :--- | :--- |
| $\mathbf{1} Q^{2}$ | $2 a=+7396$, viz. $-86 \times-86=+7396$ |  |
| $\mathbf{1} \times 3^{2}$ | $a 3$ | $32 a=-275^{2}$ |
| $2+3$ | $4 a+3^{2 a}=4644$, as at firt. |  |

$$
E X A M P L E
$$



Again, for the fecond Value of $a$, let $a a-7 a-948,75=0$, and $a-34,5=0$. Then

$$
a-34,5=0) a a-7 a-948,75=0(a+27,5=0 .
$$

Confequently this fecond Value is $a=-27,5$ which will form the original Equation, $a a-7 a=948,75$ if it be ordered as the laft was.

$$
E X A M P L E
$$

Suppore $36 a-a a=243$, then per Theorem 3. $a=18$ $-\sqrt{3^{24-243}}$, viz. half $3^{6}$ fquared is 324 , \&c. that is, $a=18-\sqrt{81} ;$ but $\sqrt{ } \quad 1=9$, therefore $a=18-9=9$. Now this third Form is called an ambiguous Equation, becaufe it hath two Affirmative Values of the unknown Quantity (a), both which may be found without fuch Divifion as was ufed before.
before. For in this Cafe, $a=18+\sqrt{ } 8 \mathrm{I}$, viz. $a=18+9=27$, or, $a=18-9=9$, as before. And both thefe Values of $a$ are equally true, as to forming the given Equation; viz. $36 a$ - aa $=243$. For if $a=9$, then $a a=81$, and $36 a=324$; but 324 $-8 \mathrm{I}=243$, therefore $a=9$.

Again, if $a=27$, then will $a a=729$, and $36 a=972$ : But $972-729=243$, confequently it may be, $a=27$. Now either of thefe Values of a may be found by Divifion, as thofe were in the other two Cafes, one of them being firft found by the Theorem. Thus, let $36 a-a a-243=0$, and $9-a=0_{2}$ then $9-a=0) 36 a-a a-243=0(a-27=0$

| $9 a-a a$ |
| :--- |
| $27 a-0-243$ |
| $27 \quad 2.43$ |
| $(0)$ |

Hence, if $a-27=0$, then $a=27$, as before.
Notwithftanding all Quadratick Equations of this third Form have two Affirmative Roots (as in this), yet but one of thofe Roots will give a true Anfwer to the Queftion, and that is to be chofen according to the Nature and Limits of the Queftion, as fhall be fhewed further on.

## S C H O LIUM.

From the Work of the three laft Examples, it may be obferved; that the Sum of both the Roots will always be equal to the Co-efficient of their refpective Equations, with a contrary Sign.

Thus. In Example 1. $a a+32 a=4644$

$$
\left.\begin{array}{rl}
\text { Here } a & =54 \\
\text { And } a & =-86
\end{array}\right\} \text { Add }
$$

In Example 2.

$$
\begin{aligned}
& \left.\begin{array}{rl}
a a & -7 a=948,75 \\
\text { Here } a & =34,5 \\
\text { And } a=-27,5
\end{array}\right\} \text { Add } \\
& \frac{2 a=+7}{}
\end{aligned}
$$

In the laft Example. $\quad 36 a-a a=243$
Which was changed into $a a-36 a=-243$

$$
\begin{aligned}
& \text { Here } a=9 \\
& \begin{array}{c}
\text { And } a=27 \\
\hline 2 a=36 \\
\text { D d }
\end{array}
\end{aligned}
$$

Hence

Hence it is evident, that if either of the Roots be found, the other may be eafily had without Divifions.

If the Contents of this Section be well underfood, it will be eafy to give a Numerical Solution to any Quadratick Equation, that happens to arife in refolving of Queftions, $\varepsilon^{\circ} c$. And as for giving a Geometrical Conftruction of them, I thirk it not proper in this Place ; becaufe I here fuppofe the Learner wholly ignorant of the firft Principles of Geometry, therefore I thall refer that Work to the next Part.

## C H A P. IX.

Of Ginalyfiw, or the Metbod of refolving Wablemis exemplified by Variety of Numerical ©ueftions.
N. B. H $H^{E R E}$ I advije the Learner to mate ufe always of the fame Letters, 10 reprefent the fame Data in all Queftions.

Viz. $\left\{\begin{array}{c}\text { If } \text { e reprefent any Number } \\ \text { And } e \text { reprefent a lefs Number }\end{array}\right\}$ or other Quantity,

$$
\text { Then let }\left\{\begin{array}{l}
a+e=s \text { their Sum. } \\
a-e=d \text { their Difference. } \\
a \varepsilon=p \text { their Product. } \\
a=q \text { their Quotient. } \\
e=e=z \text { the Sum of their Squares. } \\
a a+e e=z \text { the Difference of their Squares. } \\
a a-e e=x \text {. }
\end{array}\right.
$$

Any two of thefe fix $(s, d, p, q, z, x)$ being given, thence to find the reft ; which admits of fifteen Variations, or Queftions.

Queftion I. Suppofe $s$ and $d$ were given, and it were required by them to find $a, e, p, q, z$, and $x$.

| Let $\{$ | 1 <br> $2+e=s$ <br> $1+2$ | $\left.\begin{array}{l}a-e=d\end{array}\right\}$ and fuppofe $\left\{\begin{array}{l}s=240 \\ d=192\end{array}\right\}$ Then |
| :---: | :--- | :--- |
| $3 \div \overline{2}$ | 4 | $a=s+d=432$ |
| $1-2$ | $a=\frac{s+d}{2}=216$, here $a$ is found. |  |
| 5 | $2 e=s-d=48$. |  |

Chap. 9.
$5 \div-2|6| e=\frac{s-d}{2}=24$, here $e$ is found.
$4 \times 6 \quad 7 a_{e}=\frac{s s-d d}{4}=p=5184$, here $p$ is found.
$4 \div 68 \frac{a}{e}=\frac{s+d}{s-d}=q=9$, here $q$ is found.
4 (2) $9 \quad a a=\frac{s s+2 s d+d d}{4}=46656$
6 (a) 2 ee $10=\frac{s s-2 s d+d d}{4}=576$ 9-10|12 $a$ a-ee=sd=x=46080, $x$ found.

2uefion 2. Let $s$ and $p$ be given, to find the reft.

D d 2

2ueftion 3. Supposes and $q$ are given, to find the reft.


2uefion 4. Let $s$ and $z$ be given, to find the ref.

| Viz. $\{$ | I <br> 2 | $a+e=s=240$ <br> $\mathbf{I} Q^{2}$ |
| ---: | :--- | :--- |
| 3 | $\frac{a+e e=z=47232}{a a+2 a e+e e=s s}$ |  |
| $3-2$ | 4 | $2 a e=s s-z$ |
| $2-4$ | 5 | $a a-2 a e+e e=2 z-s s$ |
| $5 u^{2}$ | 6 | $a-e=\sqrt{2 z-s s}=d$ |

Chap. 9.

$$
\begin{array}{l|l|l}
1+6 & & 2 a=s+\sqrt{2 z-s s} \\
7 \div 2 & 8 & a=\frac{s+\sqrt{2 z-s s}}{2} \\
1-6 & 9 & 2 e=s-\sqrt{2 \%-s s} \\
9 \div 2 & 10 & e=\frac{s-\sqrt{2 z-s s}}{2}
\end{array}
$$

The reft are found jut as in the ad 2 ueftion; the 8 and no Steps here being the very fame with the 8 and 10 Steps there.

2uefion 5. When $s$ and $x$ are given, to find the reft.


Queftion 6. Suppofe $d$ and $p$ are given, to find the reft.


2uefion 7. Let $d$ and $q$ be given, to find the reft.


Chap. 9. Of mumerical Dueftiong. 207

$$
\begin{array}{c|c|l}
7 \times 8 & 10 & a e=\frac{q d d}{q q-2 q+1}=p \\
8 Q^{2} & 11 & a a=\frac{q q d d}{q q-2 q+1} \\
7 Q 2 & 12 & e e=\frac{d d}{q q-2 q+1} \\
11+12 & 13 & a a+e e=\frac{q q d d+d d}{q q-2 q+1}=z \\
11-12 & 14 & a a-e e=\frac{q q d d-d d}{q q-2 q+1}=x
\end{array}
$$

Quefion 8. Suppofe $d$ and $z$ given, to find the reft.


## Quefion 9 . Let $d$ and $x$ be given, to find the reft.



2ueftion 10. Let $p$ and $q$ be given, to find the reft.

$$
\begin{aligned}
& \text { xix. }\left\{\begin{array}{l|l}
1 & \begin{array}{l}
a e=p=5184 \\
2
\end{array} \\
\frac{a}{a}=q=9
\end{array}\right\} \text { Quire } a \cdot c \cdot d \cdot z \cdot x \cdot \\
& 1 \times 23 a \vec{a}=q p, \text { for } \frac{a e}{1} \times \frac{a}{e}=\frac{a a b}{e}=a a \\
& 3 \omega^{2} \quad 4 a=\sqrt{ } q p \\
& \left.1 \div 2 \quad 5 \quad e e=\frac{p}{q} \text {, for } \frac{a}{1}\right) \frac{a_{e}}{1}\left(\frac{a c e}{a}=e e\right. \\
& 5 \mathrm{~m}^{2} \mid 6 \quad e=\sqrt{q} \\
& 4+\left.6\right|_{7} a+e=\sqrt{ } q p+\sqrt{q}=s
\end{aligned}
$$

Chap. 9.

$$
\begin{array}{l|l|l}
4-6 & 8 & a-e=\sqrt{ } q p-\sqrt{q}=d \\
3+5 & 9 & a a+e e=q p+\frac{p}{q}=z \\
3-5 & 10 & a a-e e=p q-\frac{p}{q}=x
\end{array}
$$

Quefion II. Let $p$ and $z$ be given, to find the reft.


Quefion 12. Let $p$ and $x$ be given, to find the ref.



Quefion 13 . Having $q$ and $z$ given, to find the reft.


Chap. 9.

$$
\begin{aligned}
& 2-7|8| a a=z-\frac{z}{q q+1}=\frac{q q z}{q q+1} \\
& 8 \mathrm{un}^{2} \quad 9 \quad a=\sqrt{ } \frac{q q z}{q q+1} \\
& 7 \mathrm{us}^{2} 10 \quad e=\sqrt{q} \frac{z}{q+1} \\
& 9+10 \text { 11 } a+e=\sqrt{q q z}+\sqrt{q q+1} \frac{z}{q q+1}=s \\
& 9-1012 a-e=\sqrt{q q z}-\sqrt{q q+1} \frac{z}{q q+1}=d \\
& 9 \times 10 \text { 13 } a e=\sqrt{ } \frac{q q z z}{q^{+}+2 q q+1}=p \\
& 8-7|r| a a-e e=\frac{q q z-z}{q q+1}=x
\end{aligned}
$$

2uefion 14. When $q$ and $x$ are given, to find the reft.

$$
\begin{aligned}
& 2+e e \\
& 4 \text { and } 5 \\
& 6 \text { - ie } \\
& 7 \div 99-1 \\
& \begin{array}{l}
a=q q u e \\
a=x+e e
\end{array} \\
& q q e e=x+e e \\
& q q e e-e e=: \\
& 8 \quad e=\frac{x}{q q-1} \\
& 2+89 \text { a } a=x+\frac{x}{q q-1}=\frac{q q x}{q q-1} \\
& 9 \omega^{2} 10 \quad a=\sqrt{q q-1} \\
& 8 \omega^{2} \text { II } e=\sqrt{q q-1} \\
& 10+11|12| a+8=\sqrt{ } \frac{q q x}{q q-1}+\sqrt{q q-1}=s \\
& \text { Eek }
\end{aligned}
$$



2uffion 15. When $z$ and $x$ are given, to find the reft.


Thefe fifteen Queftions are propofed in Dr Pell's Aigebra; but he purfues only the firft Queffion throughout, and breaks off in the other fourteen, after the Values of what I call a and $e$ are found. But I have proceeded in every one of them, to find the Values of all the unknown Qualities, becaufe they afford
afford fuch Variety, as being well obferved by a Learner, will be found very ufeful in the Solution of moft Queftions.

Note, I have chofe to ufe the fame Numbers for the refpective Value of each Quantity throughout all the Queftions, becaufe they will be more fatisfactory in proving the Work than various Numbers would have been. Not but that any Numbers may be taken at Pleafure, provided that the Number reprefented by $a$, be greater than that by $e, 8 z c$. I have omitted the Numerical Calculations purely for the Learner to practife on.

Queftion 16. There are two Numbers, the Sum of their Squares is 2368 ; and the greater of them is in Proportion to the lefs, as 6 to I. What are thefe Numbers?

Let $a=$ the greater Number, $e=$ the leffer, and $z=2368$.


Quefion 17. There are three Numbers in continued Proportion, the Sum of the Extreams is 156 , and the Mean is 72 ; What are the two Extreams?

That is, Suppofe $a \cdot m, e$ in $\because$, and $m=72$.


$$
4-5
$$

$$
\left.\begin{array}{r|l|l}
4-5 & 6 & a a-2 a e+e e=s s-4 m m \\
6 \omega^{2} & 7 & a-e=\sqrt{s s-4 m m} \\
1+7 & 8 & 2 a=s+\sqrt{s s-4 m m} \\
8 \div-2 & 9 & a=\frac{s+\sqrt{s s-4 m m}}{2}=108 \\
1-9 & 10 & e=\frac{s-\sqrt{s s-4 m m}}{2}=48
\end{array}\right\} \text { Or }\left\{\begin{array}{l}
a=48 \\
e=108
\end{array}\right.
$$

Quefion 18. There are three Numbers in $\because$, their Sum is 74, and the Sum of their Squares is 1924; What are thofe 2Numbers?

That is, $a, e, y$ are in $\div$

| Then $\{$ | 2 | $\left.\begin{array}{l} a+e+y=s=74 \\ a a+e e+y y=z=1924 \\ a: e:: e: y \end{array}\right\} \text { Quære } a, e, y$ |
| :---: | :---: | :---: |
| $5 \because$ | 4 | $a y=e e$ |
| $1-e$ | 5 | $a+y=s-e$ |
| $2-e l$ | 6 | $a a+y y=z-e c$ |
| $4 \times \overline{2}$ | 7 | $2 a y=2 e e$ |
| $6+7$ | 8 | $a a+2 a y+y y=z+e e$ |
| $5^{\text {G2 }}$ | 9 | $a a+2 a y+y y=s s-2 s e+e c$ |
| 8 and 9 | 10 | $z+e e=s s-2 s e+e c$ |
| $10 \pm$ | 11 | 2se=ss-z |
| $11 \div 23$ | 12 | $e=\frac{s s-z}{2 s}=24$ |
| 5, | 13 | $a+y=s-e=50$ |
| $13{ }^{2}$ | 14 | $a a+2 a y+y y=2500$ |
| $4 \times 4$ | 15 | $4 a y=4 e e=2304$ |
| $14-15$ | 16 | $a a-2 a y+y y=196$ |
| $16 w^{2}$ | 17 | $a-y=\sqrt{196}=14$ |
| $13+17$ | 10 | $2 a=50+14=64$ |
| $18 \div \overline{2}$ | 19 | $a=32 \quad$ Or $\{a=18$ |
| 13-10 | 20 | $y=50-32=18\}$ Or $\left\{\begin{array}{l}\text { a } \\ y=32\end{array}\right.$ |

Note, In all Queftions about continual Proportionals, (either Arthmetical or Geometrical) where three Terms are fought, the Mean is the eafeet found firft (as above) and if all the Terms be Afirmative, then it is equal whether the firf or lat Term be the greaten.

Queftion 19. There are three Numbers in $\div \div$ their Sum is 76 ; and if the Sum of the Extremes be multiplied into the Mean, that Product will be 1248; What are thofe Numbers?

| Viz. $\{$ | 1 2 3 | $\left.\begin{array}{l}a: e:: e: y \\ a+e+y=s=76\end{array}\right\}$ by the Quetion. |
| :---: | :---: | :---: |
| 1 | 4 | $a y=e e$ |
| $1 \times 1$ | 5 | $a e+e e+y e=s e$ |
| $5-3$ | 6 | $e e=s e-p$ |
| 6 - se | , | $e e-s e=-p$ |
| $7 C \square$ | 8 | $e e-s e+\frac{1}{4} s s=\frac{1}{4} s s-p$ |
| $8 \mathrm{cw}^{2}$ | 9 | $e-\frac{1}{2} s=\sqrt{\frac{1}{4} s s-p}$ |
| $9+\frac{1}{2} s$ | 10 | $e=\frac{1}{2} s+\sqrt{\frac{1}{4} s s-p}=\left\{\begin{array}{l} 52 . \text { perTheorem } 3 . \\ 24 \text { Chap. } 8 . \end{array}\right.$ |
| 2 - IC | 11 | $a+y=52$ |
| $4 \times \frac{\square}{4}$ | 12 | $4 a y=e e=2304$ |
| $11{ }^{\text {c }}$ | 13 | $a a+2 a y+y y=27 c 4$ |
| $13-12$ | 14 | $a a-2 a y+y y=400$ |
| $14 \omega^{2}$ | 15 | $a-y=\sqrt{400}=20$ |
| $11+15$ | 16 | $2 a=52+20=72$ |
| $16 \div \overline{2}$ | 17 | $a=36 \quad\}$ Or $a=16$ |
| 11-17 | 18 | $y=5 x-36=16\}\{$ and $y=35$ |

$N$. B. If you take $e=\frac{1}{2} s+\sqrt{\frac{1}{4} s s-p}=52$ (at the 10 th Step) then it will be $75-52=24=a+y$, which is imponibie, viz. that the Mean fhould be greater than the Sum of the two Extreams. Therefore it muft be $e=\frac{1}{2} s-\sqrt{\frac{1}{4} s s-p}=24$. (Sẹe page 201.)

Quefion 20. There are three Numbers in Arithmetical Progreifon, the firft being added to twice the fecond, and three times the third, their Sum will be 62 ; and the Sum of all their Squares is 275; What are thofe Numbers?

| Suppofe | $a, e, y$ in Arithmetical Progreffion. <br> 2 | $a-1-2 e+3 y=62$ <br> 3 <br> And |
| :--- | :--- | :--- |
| Then | 4 | $\left.\begin{array}{l}a+e e+y y=275\end{array}\right\}$ by the Queftion. |
| $2-4$ | 5 | $2 e+2 y=62-2 \varepsilon$ |
| $5 \div 2$ | 6 | $e+y=31-e$ |
| $6-e$ | 7 | $y=31-2 e$ |
| $4-7$ | 8 | $a=4 e-31$ |


| $80^{2}$ |  | $a a=16 e e-248 e+961$ |
| :---: | :---: | :---: |
| $70^{2}$ | 10 | $y y=961-124 e+4 e e$ |
| $9+10$ | 1 | $a a+y y=20 e e-372 e+1922$ |
| 3-11 | 12 | $e e=372 e-20 e e-1647$ |
| $12+2000$ | 13 | $21 e e=372 e-1647$ |
| 13-372e |  | $210 e-372 e=-1647$ |
| $14 \div 21$ | 15 |  |
| $15 C \square$ |  |  |
|  | $\left\lvert\, \begin{aligned} & 17 \\ & 18 \end{aligned}\right.$ | $\begin{aligned} & e \\ & e=\frac{12}{7} \pm \frac{1}{7}=9 \text {, or } 8 \frac{s}{7} \text { the } \mathrm{Me} \end{aligned}$ |
| $18 \times \overline{4}$ | $19$ |  |
| 8 and 19 | 20 | $a=36-3 \mathrm{I}=5$, or $34 \frac{6}{7}-3 \mathrm{I}=3 \frac{6}{7}$ |
| $18 \times \overline{2}$ | 21 | $2 e=18$, or ${ }^{17} 7 \frac{3}{7}$ |
| 7 and 21 | 22 | $y=31-18=13$, or $31-17 \frac{7}{7}=13 \frac{4}{7}$ |

Quefion 21. There are three Numbers in Arithmetical Progreffion ; the Square of the firf 'Term being added to the Product of the other two is 576 ; the Square of the Mean being added to the Product of the two Extreams, make 612; and the Square of the laft Term being added to the Product of the firft into the fecond, is 792 : What are thofe Numbers?


| $1 \omega^{2}$ | 20 | $a-y=\sqrt{2}+4=12$ |
| :---: | :--- | :--- |
| $5+20$ | 21 | $2 a=2 e+12=48$ |
| $21 \div \frac{2}{2}$ | 22 | $a=24$ |
| $5-22$ | 23 | $y=2 e-24=12$ |$\quad$ Or \(\left\{\begin{array}{l}a=12 <br>

y=24 <br>
\hline\end{array}\right.\)

Quefion 22. It is required to find two fuch Numbers, that the Sum of their Squares may be $8226 \frac{1}{2}$; and their Product being added to the Square of the lifer, may be $6921 \frac{1}{2}$.


This Queftion may be performed with left Trouble, by fubfituting Letters from the known Numbers.

Viz. $\left\{\begin{array}{l}a a+c \bar{e}=z \\ a \cdot+c e=p\end{array}\right\}$ Then let $z-p=d=a a-a e, \& c$. Ff

2uefition 23. It is required to find three fuch Numbers, that the Sum of the firft and fecond, being multiplied with the third, may be 37824 ; and the Sum of the fecond and third, multiplied with the firft, may be 59944; alfo, that the Sum of the firft and third, being multiplied with the fecond, may be 52456 .

Let $a, e, y$ reprefent the three Numbers.

| Then $\{$ | 1 2 3 | $\left.\begin{array}{l} a y+c y=37824=b \\ e a+y a=59944=c \\ a e+y e=52456=d \end{array}\right\} \text { Quære } a, e, y .$ |
| :---: | :---: | :---: |
| $+2+3$ Let | 4 | $\begin{aligned} & 2 a e+2 a y+2 y e=b+c+d \\ & z=b+c+d \end{aligned}$ |
| $4 \div 2$ | 6 | $a e+a y+y_{e}=\frac{x}{2} z=\frac{b+c+d}{2}$ |
| 6-3 | 7 | $a y=\frac{1}{2} z-d=\frac{z-2 d}{2}$ |
| $7 \div a$ | 8 | $y=\frac{z-2 d}{2 a}$ |
| 6-2 | 9 | $y e=\frac{1}{2} z-c=\frac{z-2 c}{2}$ |
| 6-1 | 10 | $a e=\frac{1}{2} z-b=\frac{z-2 b}{2}$ |
| $10 \div a$ | 11 | $e=\frac{z-2 b}{2 a}$ |
| $8 \times 11$ 9 and 12 | 12 | $\begin{aligned} & y e=\frac{z-2 d}{2 a} \times \frac{z-2 b}{2 a}=\frac{z z-2 d z-2 b z+4 b d}{4 a a} \\ & \frac{z-2 c}{2}=\frac{z z-2 d z-2 b z+4 b d}{4 a a} \end{aligned}$ |
| $\begin{array}{r} 13 \times 4 a a \\ 14 \div \end{array}$ | 14 | $\begin{aligned} & 2 z a a-4 c a a=z z-2 d z-2 b z+4 b d \\ & a a=\frac{z z-2 d z-2 b z+4 b d}{2 z-4 c}=55696 \end{aligned}$ |
| $15 \mathrm{~m}^{2}$ | 16 | $\begin{gathered} a=\sqrt{ } 556 G 6=236 \\ z-2 b \end{gathered}$ |
| II | 17 | $e=\frac{2 a}{2 a}=158$ |
| 8 | 18 | $y=\frac{z-2 d}{2 a}=96$ |

Quefion 24. It is required to find two fuch Numbers, that their Sum being fubftrached from the Sum of their Square:, may leave 14, and if their Product be added to their Sum, it may make I4.

Let $a$ and $e$ be put for the Numbers, and let $y=a+e$
Then $\left\{\left|\begin{array}{l}1 \\ 2\end{array}\right| \begin{array}{l}a a+e e-y=14 \\ a c+y=14\end{array}\right\}$ by the Queftion.


2ueftion 25. Three Men difcourfing of their Money; faith the firft, if 100 l . were added to my Money, it would be as much as both your Money put together; faid the fecond Man, if 100 l . were added to my Money, I fhould have twice as much as both you have; faith the third Man, if 100 l . were added to my Money, I fhould have then three times as much Money as both you have: How much Money had each Man ?

Let a reprefent the firft Man's Money, e the fecond, and $y$ the third.



2uefion 26. Three Men have each fuch a Sum of Money, that if the firft and fecond Mens Money be added to Half of what the third Man hath; that Sum will be $92 \%$. And if the fecond and third Mens Money be added to nne third Part of the firft Man's Money, that Sum will be 92 l. Laftly, if one fourth Part of the fecond Man's Money be added to the firft and third Mian's Money, that Sum will alfo be 921 . How much was each Man's Money ?

Put a for the If Man's Money, e for the 2d, and $y$ for the 3 d .


Queftion 27. Four Men walking abroad, found a Pirfo of Shilimgs only, out of which every one took a Number ar an Adventure; afterwards by comparing their Numbers rogther they found, that if the firft took 25 Shitings from the tecond, it would make his Number equal with what tie fecond nad then ief; if the fecond took 30 Shillings from the hird, bis Miratev would then be triple to what the third had left, and if the an tock 40 Shillings from the fourth, his Money would then be doutie to what the fourth had left; lafly, the founh taking so 5 Hinings from the firft, he would then have three times as nith as tre firft had left, and 5 Shitines more: It is reguired to tell how many Shillings each Man had.

Put $a$ for the firft Sum, $e$ the fecond, $y$ the third, and $u$ the fourth.

| Then $\{$ | 1 2 3 4 | $\left.\begin{array}{r} a+25=e-25 \\ e+30=3 y-90 \\ y+40=2 u-80 \\ u+50=3 a-145 \end{array}\right\} \text { by the Queftion. }$ |
| :---: | :---: | :---: |
| $1+25$ | 5 | $a+50=e$ |
| $2-30$ | 6 | $3 y-120=e$ |
| 5 and 6 | 7 | $a+50=3 y-120$ |
| $7+120$ | 8 | $a+170=3 y$ |
| $8 \div \overline{3}$ | 9 | $y=\frac{a+170}{3}$ |
|  |  | 3 |
| 3-40 | 10 | $y=2 u-120$ |
| 9 and 10 | 1 I | $2 u-120=\frac{a+170}{3}$ |
| $1+\overline{120}$ | 12 | $2 u=\frac{a+170}{3}+120=\frac{a+530}{3}$ |
| $12 \div 2$ | 13 | $u=\frac{a+530}{6}$ |
| $4-50$ | 14 | $u=3 a-195$ |
| 13 and 14 | 15 | $3 a-195=\frac{a+530}{6}$ |
| $15 \times 6$ | 16 | $18 a-1170=a+53^{\circ}$ |
| $16 \pm$ | 17 | $17 a=1700$ |
| $17 \div 17$ | 18 | $a=100$ the $\mathbf{I} f$ ] |
| by the 5 | 10 | $e=150 \quad 2 d$ Man's Number of Shillings. |
| by the 9 | 20 | $\left.y=90 \quad 3^{d}\right\}^{\text {man's Number of sming }}$ |
| by the 14 | 21 | $u=105 \quad 4 t b)$ |

2ueftion 28. Four Men have each a Sum of Money, which being put all together makes 250 Pounds; and if to the firft Man's Money be added 8 Pounds, it will be juft as much as the fecond Man's Money decreafed by 8 Pounds, and as much as 8 times the third Man's Money, and but as much as one eighth Part of the fourth Man's Money; how much had each Man?

Let $a, e, y, u$, reprefent the four Men's Money.

| Then $\{$ | 3 |  | $\left\{\begin{array}{l} a+e+y+u=s \\ a+b=e-b \\ y b=\frac{u}{b}=a+b \end{array}\right\} \begin{aligned} & \text { by the Queftion. Let } s \\ & =250 \text { and } b=8 \text {, or any } \\ & \text { other Number at Pleafure. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $2+6$ | 4 |  | $a+2 b=e$ |
| $3 \div b$ | 5 |  | $y=\frac{a+b}{b}$, becaufe $y b=a+b$ |
| $3 \times b$ | 6 |  | $u=b a+b b$, for $\frac{u}{b}=$ |
| $4+5+6$ | 7 |  | $e+y+u=a+2 b+\frac{a+b}{b}+$ |
| $x-a$ | 8 |  | $e+y+u=s-a$ |
| 7 and 8 | 9 |  | $a+2 b+\frac{a+b}{b}+b a+b b=s-a$ |
| $9 \times b$ | 10 |  | $b a+2 b b+a+b+b b a+b b b=b s-b a$ |
| $10 \pm$ | II |  | $2 b a+b b a+a=b s-b b b-2 b b-b$ $b_{s}-b b b-2 b b-b$ |
| $11 \div$ | 12 |  | $a=\frac{0-8 b-200-b}{b b+2 b+1}=16,6913588: \mathrm{c} .$ |
| by the 4, | 13 |  | $e=a+2 b=32,691358$ \& cc. |
| by the 5 , | 14 |  | $y=\frac{a+b}{b}=3,086419 \&<\mathrm{c} .$ |
| by the 6 , |  |  | $u=b a+b b=197,530864$ \&c. |

That is, $\left\{\begin{array}{rrr} \\ a=1 . & \text { s. } & d . \\ e=32 \cdot 13 \cdot 9,92592 \\ y=3 \cdot 1 \cdot 9,92592 \\ u=197 \cdot 10 \cdot 7,40736\end{array}\right.$
which fhould be juft 250 l . the Sum propofed in the Queftion. Now what it wants of that Sum, proceeds from the Imperfection of the Decimal Parts being not continued on to more Places, which would have brought it nearer the Truth, tho' not perhaps exactly fo. Sect. 5. Chap. 5. Part 1.

2uefion 29. Several Merchants enter into Partnerfhip, every one put into the Stock 65 times as many Pounds as there were Partners; with that Stock they traded and gained as many Pounds per 100 l . as there were Partners. Now if rol. 10 s . be added to, and fubftracted from, their Gain, the Product of that Sum and Difference will be 649ıl. 6s. $3^{d}$.

Quare, How many Merchants there were, $\varepsilon^{\circ}{ }^{\circ}$.
Let ${ }^{\text {I }} \quad a=$ the Number of Merchants.
$1 \times \overline{65} 26_{5} a=$ every one's Sum put into Stock.
$\begin{array}{lll}2 \times a & 3 & 65 a a=\text { the whole Stock. }\end{array}$
And
Viz. $5 \frac{65 a a a}{100}=$ the whole Gain.
$5+\overline{10,5}$
$5-\overline{10,5} 7 \frac{65 a a a}{100}-10,5$

| $6 \times 7$ | 8 | $\frac{4225 \text { aaaaaa }}{10000}-110,25=6491,3125$, by the Quef. |
| ---: | ---: | :--- |
| $8 \times \overline{10000}$ | 9 | $425 a^{6}-1102500=64913125$ |
| $9+$ | 10 | $4225 a^{6}=66015625$ |
| $10 \div \overline{4225}$ | 11 | $a^{6}=\frac{66015625}{4225}=15625$ |

${ }^{11} w^{6}{ }^{12} a=\sqrt{ } 15625=5$ the Number of Merchants.
$12 \times\left.\overline{65}\right|_{13} \quad 65 a=325$ the Number of Pounds each put in.
2uefion $3^{\ominus}$. Three Merchants join Stocks together; the firft Man's Stock was lefs than the fecond Man's by $13 l$. the fecond and third Man's Stock was $\mathbf{1 7 5}$ l. in trading they gain 48 l . more than their whole Stock was; the firft Man's proportional Part of the Gain was 78 . What was each Man's Stock and Part of the Gain?

Let $a, e, y$ reprefent each Man's Stock.
Then $\{$$\left\{\begin{array}{l|l}1 & a+e+y=s \text { the whole Stock. } \\ 2 & s+48=\text { the whole Gain. } \\ \text { And }\{ & \left.\begin{array}{l}a+13=e \\ 3\end{array}\right\} \text { by the Queftion. } \\ 4+a & \frac{e+y=175}{4+a} \\ 1 \text { and } 5 & 5 \\ 5+e+y=175+a \\ s=175+a\end{array}\right.$

| 6 and 2 But 8 • |  | $\begin{aligned} & s+48=223+a \\ & 175+a: 223+a:: a: 78 \text { per Queftion. } \\ & a a+223 a=78 a+13650 \end{aligned}$ |
| :---: | :---: | :---: |
| $9-78 a$ | 10 | $a a+145 a=13650$ |
| $\bigcirc G$ 口 | 11 | $a a+145 a+5256,25=18906,25$ |
| $11 \mathrm{ws}{ }^{2}$ | 12 | $a+72,5=\sqrt{18906,25}=137,5$ |
| 12-72,5 | 13 | $a=137,5-72,5=65$ |
| 3. | 14 | $e=a+13=78$ |
| 4-14 | 15 | $y=97$ |
| Then | 16 | 65:78: $78: 93 \mathrm{l}$. 12 s . $=$ e's Gain. |
| Again | 17 | $65: 78:: 97: 116 l .8$ s. $=$ y's Gain. |
| $\text { oof }\{$ | 1.8 | $116 l .8 s .+93 l .12 s .+78 l .=288 i$, the Gain. |
|  | 19 | $65+78+97=240$. the whole Stock. |
| $18-19$ |  | $288-240=48$ the Gain more than the Stock. |

Queftion 3r. A Father at his Death left his three Sons his Money in this manner ; to the eldeft he gave half of it, wanting 44 Pounds; to the fecond he gave one third of it, and 14 Pounds more; to the youngeft he gave the Remainder, which was lefs than the Share of the fecond Son, by 82 Pounds: What was each Son's Share?

Let $a, \ddot{e}, y$ be the three Shares, and $z=$ the whole Sum.


2uefion 32. A Man playing at Hazard or Dice, won the firf Throw juft fo much Money as he had in his Pocket; the fecond

Chap. 9
fecond Throw he won the Square Root of what he then had, and five Shillings more; the third Throw he won the Square of all he then had ; after which his whole Sum was 112l. 16s. What Money had he when he began tü play?

| Suppore | 1 | $a=$ his firft Sum. Then |
| :---: | :---: | :---: |
| $1 \times \overline{2}$ | 2 | $2 a=$ his Sum after the firft Throw. |
| And | 3 | $5+\sqrt{2} a=$ the Winnings at the 2 d Throw. |
| $2+3$ | 4 | $2 a+5+\sqrt{2 a}=$ the Sum after the 2d Throw: |
| $40^{2}$ | 5 | $4 a a+22 a+25+4 a \sqrt{ } 2 a:+10 \sqrt{ } 2 a=$ the |
|  |  | Winnings at the 3 d Throw; and therefore |
|  |  | $4 a a+24 a+30+4 a \sqrt{ } 2 a+11 / 2 a=2256$ Shil |

But to avoid thefe Surd Quantities, let us, inftead of fuppofing $a=$ the firft Sum, make a fecond Trial, viz.

| Let | 1 | $2 a a=$ the firft Sum |
| :--- | :--- | :--- | $4 a \dot{a}=$ the Sum after the firft Throw. $2 a+5=$ the Sum won at the 2 d Throw. $4 a a+2 a+5=$ his Sum after the 2d Throw. $16 a^{4}+16 a^{3}+44 a a+20 a+25=$ the Win nings at the 3 d Throw ; and therefore $16 a^{4}+16 a^{3}+48 a a+22 a+30=2256$ Shil.

Yet again, to avoid thefe high Equations, let us make a third Suppofition; thus,

| Let | 1 | $\frac{a a}{2}=$ the firf Sum. |
| :---: | :---: | :---: |
| $1 \times \frac{1}{2}$ | 2 | $a a=$ the Sum after the firft Throw. |
| Then | 3 | $a+5=$ the Winnings at the 2 d Throw. |
| $2+3$ | 4 | $a a+a+5=$ the Sum after the 2d Throw. |
| Subfti. | 5 | $e=a a+a+5$. |
| 5 [20 $^{2}$ | 6 | $e e=$ the Winnings at the 3 dhrow. Then |
| $5+6$ | 7 | $e e+e=2256$ Shillings by the Quention. |
| $7 C \square$ | 8 | $e e+e+0,25=22,56,25$ |
| $8 \mathrm{mu}^{2}$ | 9 | $c+0,5=\sqrt{2256,25}=47,5$ |
| $9-0,5$ | 10 | $e=47$ |
| 5 and 10 | 11 | $a a+a+5=47$ |
| $11-\overline{5}$ | 12 | $a a+a=42$ |
| 12, $C$ 口 | 13 | $a a+a+0,25=42,25$ |
| $1 \omega^{\text {c }}$ | 14 | $a+0,5=\sqrt{ } 42,25=6,5$ |
| $14-0,5$ | 15 | $a=6$ |
| 15 (6) ${ }^{2}$ | 16 | $a a=36$ |
| $16 \div 2$ | 17 | $\frac{a a}{2}=\frac{30}{2}=18\left\{\begin{array}{l}\text { The Shillings he had in his } \\ \text { Pocket when he began to play }\end{array}\right.$ |

Note, In refolving of the laft Queftion, I have made three different Suppofitions for the Thing fought, purely as an Inftance, to fhew the young Learner how well he ought to confider the Nature of the Queftion, when he firft ftates it, and make choice of reprefenting the Thing fought, fo as to avoid running it into Surds, if poffible, viz. as in the firft Suppofition of $a=$ the firit Sum, $\varepsilon^{\circ} c$. Not but that fuch Equations may be folved, as thall be fhewed in the next Chapter. However, it is moft like an Artift to perform Things of this Nature the neareft and eafieft way they can be done.

2uffion 33. Suppofe there were two equal Circles, whofe Peripheries (viz. Circumferences) are divided into 44310 equal Parts; and that thofe Circles were fo placed upon one Axis, as to move the contrary way to each other; and fuppofe one of them to move but one of thefe equal Parts the firft Day, two Parts the fecond Day, three Parts the third Day, and fo on in Arithmetical Progreflion, viz. 1, 2, 3, 4, 5, \&c. and the other to move every Day the Cube of thofe Parts, 1, 8, 27, 64, 125, 8ic. of the fame Parts: How many Parts and bow many Days muf each Circle move, before the fame two Puints mect that were together when they began to move?

In order to give a ready Solution to this Queftion (or any other in this Kind) it will be convenient to premife this Lemma.

$$
L E M M A .
$$

The Sum of any Series of Cubes whofe Roots are in Arithmetick Progreffion (the firft Term, and common Difference being Unity or I) is equal to the Square of the Sum of all thofe Roots.

As in thefe
Terms in Arih. their Cubes. Ec.


Let $\mid$ i $a=$ the Sum of all the Parts the ift Circle moves. Then $2 a a=$ the Sum of all the Parts the $2 d$ moves.
Confequen.
$a a+a=44310$ by the Queft. (per Lem.
$a a+a+0,25=44310,25$
$2 C$
$a a+a+0,25=44310,25$
Chap. 9. Of mumerical Dultiont. 227

Next to fird the Number of Days they moved; there is given the firt Term $=1$, the common Difference $=1$, and the Sum of all the Terms $=210$, thence to find the laft Term, which in this Cafe is the fame with the Number of all the Terms.

Let $a=\mathrm{I}$ the firft Term, $e=\mathrm{I}$ the common Difference, and $s=210$ the Sum of all the Terms, to find $y=$ the laft Term; as per Sect. 1. Chap. 6. Then $y y+e y=2 s+a a$ - $a e$ by the 16 Step, Page 186; that is, $y y+y=210 \times 2=420$ \&c. Hence $y=20$ the Number of Days required.

I fhall now proceed to give an Example or two of the Method ufed in arguing about unlimited Queftions; viz. fuch Queftions which admit of various Anfwers, fuch as thofe in Aliligation Alternate promifed in Page 117.

In order to fhorten that Work, it will be convenient for the Learner to know the two Signs of Comparifon, $>$ and $\tau$. The Sign $>$ is of $\mathbb{G} 2 e a t e r$ than; as $b>a$ fignifies that $b$ is greater than $a$. The Sign $\tau$ is of Luffer than; as $b>d$ fignifies that $b$ is leffer than $d, \notin c c$.

$$
E X A M P L E
$$

Quefion 34. A Tobacconift bath three Sorts of Tobacco, viz. one of 2 s .8 d . the Pound, another of 20 d . the Pound, and a third Sort of 16 d . the Pound; of thefe be would make a Mixture to contain 56 Pound, that may be fold for 22 d . the Pound: How much of each Sort may be take?

Let $a=$ the Quantity of that worth 32 Pence the Pound, $e=$ that of 20 Pence the Pound, and $y=$ that of 16 Pence the Pound;

Then $a+e+y=56 \quad\}\left\{\begin{array}{l}\text { viz. each Quantity multipli- } \\ \text { ed into it's own Price, equals } \\ \text { and }\end{array}\right.$ And $32 a+20 e+16 y=1232\}\left\{\begin{array}{l}\text { their Sum multiplied into the } \\ \text { mean Frice. }\end{array}\right.$

This Queftion being thus ftated, it appears by Rule 1, Page 176, that it is capable of innumerable Anfwers; becaufe for any one of thefe three Letters, $a, e, y$, there may be taken any Number at Pleafure, provided it be lefs than 56. But although that may be truly done, yet there are feveral Ways of arguing about thefe Sorts of Queftions, which will limit or bound them to all their proper or poffible Anfwers in whole Numbers. Thus,


From the two laft Steps it appears, that the Quantity fignified by $a$, ought to be lefs than 21 , and greater than $9 \frac{1}{3}$; that is, any Number bet wixt $9 \frac{1}{3}$ and 21, may be taken for the Value of $a$ : Confequently there may be eleven Anfwers to this Queftion in whole Numbers.

Suppofe $a=10$, then $e=84-40=44$, per 7 th Step; and $y=0-28=2$, per 8th Step. Again, if $a=11$, then $e$ $=84-44=40$, per 7 th Step; and $y=33-28=5$, per Sth Step: and fo on for the reft, which will be as in the following Table.

| $a$ | ${ }^{\circ}$ | $y$ | $a$ | $\bullet$ | $y$ | $a$ | $e$ | $y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - | - |
| 10 | 44 | 2 | 14 | 28 | 14 | 18 | 12 | 26 |
| 11 | 40 | 5 | 15 | 24 | 17 | 19 | 8 | 29 |
| 12 | 36 | 8 | 16 | 20 | 20 | 20 | 4 | 32 |
| 13 | $3^{2}$ | 11 | 17 | 16 | 23 |  |  |  |

Thus it will be eafy to find out and collect all the limited Aniwers to any Queftion (of this Kind) wherein there are only three Quantities propofed to be mixed: But when there are more than three, then the Work requires a little more Trouble; becaufe the fingle Limits of all the Qiantities above two muft be found; that is, if there are four Quantities concerned in the Queftion, the Limits of two of them muft be found; if five Quantities are concerned, then the Limits of three of them mult be found, $\mathcal{E}^{\circ}$. As in the following Queftion.

Quefion 35. Suppofe it were required to mix four Sorts of Wines together ; viz. one Sort worth 7 s. 4 d , the Gallon, another Sort worth 4 s. 7 d. the Gallon, a third Sort worth 3 s. A. the Gallon, and a fourth Sort worth 2 s . nd. the Gallon: How much of each Sort may be taken to make a Mixture of 3 Gallons, fo as that the whole 2uantity may be fold for 5 s .6 d . the Gallon, without Lofs, \&c.

Firft, let all thefe feveral Rates, and the mean Rate, be reduced to one Denomination, viz. into Pence.

$$
\text { Viz. }\left\{\begin{array}{cc}
7 \text { s. } 4 d .=88 d . & 4 \text { s. } 7 d .=55 d . \\
3 \text { s. } 8 d .=44 d . & 2 \text { s. } 9 \mathrm{~d} .=33 \mathrm{~d} .
\end{array}\right\} \text { and } 5 \text { s. } 6 d .=66
$$

Put $a=$ the Quantity of that worth $88 d$. the Gallon; $e=$ that of 55 d . the Gallon, $y=$ that of 44 d . the Gallon, and $u=$ that of 33 d . the Gallon.

| Then | 1 | $a+e+y+u=63$ by the Queftion. |
| :---: | :---: | :---: |
| And | 2 | $88 a+55 e+44 y+33 u=4158=63 \times 66$ |
| -a | 3 | $y+u=63-a$ |
| $2-88 a$ | $4$ | $55^{c}+44 y+33 u=4158-88 a$ |
| $3 \times \overline{33}$ | 5 | $33^{e}+33 y+33^{u}=2079-33^{a}$ |
| $4-5$ | 6 | $22 e+11 y=2079-55 a$ |
| $6 \div \frac{5}{11}$ | $7$ | $2 e+y=189-5 a ;$ hence $a \leqslant \frac{189}{8}$ or $37 \frac{4}{5}$ |
| $3 \times \overline{55}$ | 8 | $55^{e}+55 y+55^{\prime}=3465-55^{a}$ |
| 4 | 9 | $11 y+22 u=33 a-693$ |
| $9 \div \frac{11}{11}$ |  | -2u=3a-63; hence $a>\frac{6_{3}}{\frac{6}{3}}$ or 2 r |

From the 7 th and $\mathbf{1 0 t h}$ Steps it appears, that the Quantity of that Sort of Wine denoted by $a$, muft be lefs than $37 \frac{4}{5}$ Gallons, and greater than 21 Gallons: that is, it may be $a=$ any Number of Gallons betwixt 21 and $37 \frac{4}{5}$. Whence it follows, that there may be collected 16 Anfwers to this Queftion from the Limits of $a$ only.

Next to find the Limits of $e, y$, and $u$.

| Suppofe | 11 | $a=22$, then will $5 a=110$, and $3 a=66$ |
| ---: | :--- | :--- |
| But | 12 | $2 e+y=189-5 a=79$, per 7 th Step. |
| $12-2 e$ | 13 | $y=79-2 e ;$ hence $e \frac{79}{2}$ or $39 \frac{1}{3}$ |
| Again | 14 | $s+y+u=63-a=41$, per 3 Step. |
| $14-e$ | 15 | $y+u=41-e$ |
| $15-13$ | 16 | $u=e-3^{8}$; hence $e 73^{8}$ |

From the $13^{\text {th }}$ and 16 th Steps it appears, that if $a=22$, then $\Leftrightarrow=39, y=79-2 \varepsilon=1$, and $u=\varepsilon-3^{8}=1$.
230 Slgebza. Part If.

Again,

| Suppore | 17 | $a=23$, then $5 a=115$, and $3 a=69$ |
| ---: | ---: | :--- |
| But | 18 | $2 e+y=189-5 a=74$, per 7 th Step. |
| $18-2 e$ | 19 | $y=74-2 e$; hence $e=\frac{74}{2}=37$ |
| Again | 20 | $e+y+u=63-a=40$, per 3 Step, |
| $20-e$ | 21 | $y+u=40-e$ |
| $21-19$ | 22 | $u=e-34$, hence $e>34$. |

From the 19th and 22d Steps it appears, that if $a=13$, then e may be either 35 or 36 .

## Once more for a further Illuftration.

Let

$$
\begin{array}{r|l|l}
\text { Let } & 23 & a=24, \text { then } 5 a=120, \text { and } 3 a=72 \\
\text { But } & 24 & 2 e+y=189-5 a=69, \text { per } 7 \text { th Step. } \\
24-2 e & 25 & y=69-2 e ; \text { hence } e \frac{69}{2} \text { or } 34 \frac{1}{2} \\
\text { Again } & 26 & e+y+u=63-a=39, \text { per } 3 d \text { Step. } \\
26-e & 27 & y+u=39-e \\
27-25 & 28 & u=e-30, \text { hence } e>30 .
\end{array}
$$

From hence it appears, that if $a=24$, then e may be either 31, 32, 33, or 34, viz. it may be any Number betwixt 30 and $34 \frac{1}{2}$ by the $25^{\text {th }}$ and 28 th Steps; from whence the Values of $y$ and $u$ may be cafily found.

That is, if $\left\{\begin{array}{lrr}c=31 . & \text { then } y=7 . & \text { And } u=1 \\ e=32 . & y=5 . & u=2 \\ c=33 . & y=3 . & u=3 \\ c=34 . & y=1 . & u=4\end{array}\right.$
Proceeding on in this manner with all the other fingle Values of a, there may be found above $\mathbf{1 2 0}$ Anfwers to this Queftion in whole Numbers: and if you pleafe to put $a=$ Fractions, there mav be found an innumerable Set of Anfwers; whereas the Rule of Alligation in Vulgar Aritbmetick affords but only one Anfwer in Fractions, to wit, that of $a=3 \frac{1}{2}, e=10 \frac{1}{2}, y=10 \frac{1}{2}, u=10 \frac{1}{2}$; as may be eafily tried per Ruie Page 115, $\xi^{\circ}$ c.

Tbefe two Examples being well underfood (efpecially if the 1aft be thoroughly purfued) may fuffice to fhew the Method of limiting the Anfwers to all Sorts of Queftions of this Kind. I fhall therefore conclude this Chapter of (Zueftions with giving a Solution tor the Enigma (or Riddie) propofed (but not anfwered) by Mr ${ }^{\prime}$ Fobra Kirliy, in the Clofe of the Appendix to his Aritbmetick, which
which affords feveral pretty Queftions, the Solution whereof will difcover a certain Sentence confifting of three Words, which muft be found by the Help of Figures placed (or fuppofed to be placed) over the twenty-four Letters of the Alphabet.

Thus $\left\{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot \varepsilon^{\circ} \mathrm{c}\right.$. called Indices. $a \cdot b, c \cdot d \cdot e \cdot \dot{f} \cdot g \cdot \mathcal{E}^{\circ} c$, to the laft Letter.
So that if the Index of that Letter be once found, the Letter to which it beiongs is confequently known.

The Enigma.

1. If the Difference between the Indices of the fecond Letter of the fecond Word, and the third Letter of the firft Word, be multiplied into the Difference of their Squares, the Product will be 576 ; and if their Sum be multiplied into the Sum of their Squares, that Product will be 2336 , the Index of the faid third Letter being the greateft.

| Let | 1 | $a=$ the greater Index, or that of the 3 d Letter. |
| :---: | :---: | :---: |
| And | 2 | $e=$ the leffer, or that of the 2 d Letter, |
| Then $\{$ | 3 | $\left.\begin{array}{rl}\frac{a-e}{a+e} \times \frac{a a-e e}{a a+e e} & =2766\end{array}\right\}$ by the Queftion. |
| $3 \times$ | 5 | $\overline{a a a-a b e-a e e+e e e}=57^{6}$ |
| $4 \times$ | 6 | $a a a+a a c+a c e+e c e=2336$ |
| 6-5 | 7 | $2 a a e+2 e e=1760$ |
| $6+7$ | 8 | $a a a+3 a a e+3 a c e+e c e=4096$ |
| $8 \mathrm{~m}^{3}$ | 9 | $a+e=\sqrt[3]{ } 4096=16$ |
| +e | 10 | $a a+c e=\frac{2336}{a+e}=\frac{2336}{16}=146$ |
| $93^{2}$ | 11 | $a a+2 a e+e e=256$ |
| 11-10 | 12 | $2 a e=110$ |
| 10-12 | 13 | $a a-2 a e+e e=36$ |
| $13 \mathrm{~m}^{2}$ | 14 | $a-c=\sqrt{ } 3^{6}=6$ |
| $9+14$ | 15 | $2 a=22\}$ From bence it appears, that the 3d |
| $15 \div \frac{1}{2}$ | 16 | $a=11\}\{$ Letter of the Ift Word is 1, and the |
|  |  | $e=5\}<2 d$ Letter of the 2d Word is e . |

Note, In order to. Jet down the Letters (as they become found) in their proper Places, it may be convenient to Jupply the vacant Places with Stars.

Thus $\left\{\begin{array}{cc}\text { Firft Word. } & \text { Second Word, } \\ * * l_{*} * & * * e^{*}{ }^{*}\end{array} \quad\right.$ Tbird Word,
2. The Indices laft found, are the two Extreams of four Numbers in Arithmetical Progreffion, the leffer Mean being the Index of the firtt Letter of the third Word; and the greater Mean is the Index of the fourth and laft Letter of the firft Word. Viz. 5.7.9. II are the four Terms in Arithmetical Progreffion. Whence it appears, that $G$ (whofe Index is 7) is the firft Letter of the third Word; and that $i$ (whofe Index is 9 ) is the fourth or laft Letter of the firft Word; which being placed down, will ftand thus,

$$
\text { **li } \operatorname{co}^{\boldsymbol{e} * * * \bullet} \quad G * * * \cdot
$$

3. The fecond Letter of the third Word is the fame with the third Letter of the firft Word; and the fifth Letter of the third Word is the fame with the laft Letter of the firft Word: Whence the Letters will ftand thus,

$$
* * l i . * e * * * \cdot G l * * * i * \cdot
$$

4. The Sum of the Squares of the Indices of the firft and fecond Letters of the firft Word is 520 , and the Product of the fame Indices is feven Ninths of the Square of the greater Index; which is the Index of the faid firft Letter.

Let $a=$ the greater, and $e=$ the leffer Index.


Hence the Letters will fland thus,

$$
\text { Soli. * } e * * * . G l * * i *
$$

5. The Difference between the two laft Indices, is the Index of the firft Letter of the fecond Word, viz. 18-14=4 being the Index of the Letter $D$. Then the Letters will ftand thus,

$$
\text { Soli. } D e * * * \quad G l, * * i *
$$

Chap. 9. Of Jitumerical Dueftiong. 233
6. The third and laft Letter of the fecond Word, alfo the third Letter of the third Word, are the fame with the fecond Letter of the firft Word; hence the Letters will ftand thus,

## Soli Deo Glo * $i$ *.

7. The Sum of the Indices of the fourth Letter of the third Word, and the fixth or laft Letter of the fame Word, being added to their Product is 35 ; and the Difference of their Squares is 288 ; the Index of the laft Letter being the leaft.

Put $a=$ the greater, and $e=$ the leffer Index, as before.


This laft Equation being refolved according to the Method which fhall be fhewed in the next Chapter, it will be $a=17$ it's Letter; and from the 4 th Step $e=\frac{35-a}{a+1}=r$, the Index of the Letter $a$. Then thefe two Letters being placed according to the Data above, are all that are required by the Enigma to compleat thefe Words

## Soli Deo Gloria.

## C H A P. X. <br> The Solution of Gofecten equationm in Numbers.

$\mathrm{B}^{\mathrm{E}}$EFORE we proceed to the Solution of Adfected Equations, it may not be amifs to fhew the Inveftigation (or Invention) of thofe Theorems or Rules for extracting the Roots of Simple Powers, made ufe of in Chapter ir. Part I. I fhall here make choice of the fame Letters to reprefent the Numbers both given and fought, as in my Compendium of Algebra.

Viz. Let $\left\{\begin{array}{l}G, \text { always denote the given Refolvend. } \\ r=\left\{\begin{array}{l}\text { any Number taken as near the true Root as } \\ \text { may be, whether it be greater or lefs. }\end{array}\right. \\ e=\left\{\begin{array}{l}\text { the unknown Part of the Root fought by } \\ \text { which } r \text { is to be either increafed or decreafed. }\end{array}\right.\end{array}\right.$
Then if $r$ be any Number lefs than the true Root, it will be $r+e=$ the Root fought. But if $r$ be taken greater than the true Root, it will then be $r-e=$ the Root fought. And put $D$ for the Dividend that is produced from $G$, after it is leffened and divided by $r, E^{\circ}$ c. (into the Co-efficients of Adfected Equations) according as the Nature of the Root requires. Thefe Things being premifed, we may proceed to raifing the Theorems.

## S E C T.

I. $\mathrm{F} O \mathrm{R}$ the Square Root, viz, $a a=G$. Quxre $a$.

$$
\begin{array}{r|l|l}
\text { Let } & \begin{array}{l}
r+e=a \\
1 Q^{2}
\end{array} & \begin{array}{l}
r r+2 r e+e e=a a=G \\
2-r r
\end{array} \\
3 & \begin{array}{l}
\text { Then } \\
2 r e+e e=G-r r . \text { Call it } D, \text { viz. } D=G-r r .
\end{array} \\
\text { Then } & 4 & \left\{\frac{D}{2 r+e}=e\left\{\begin{array}{l}
\text { This fhews the Ift Method of } \\
\text { extracting the Square Root, } \\
\text { Sect. 5. Chap. 11. Part I. }
\end{array}\right.\right. \\
3 \div \overline{2} & 5 & r e+\frac{x}{2} e e=\frac{G-r r}{2}=D .
\end{array}
$$

Which gives this Theorem $\left\{\frac{D}{r+\frac{1}{2} e}=e\right.$.
The Arithmetical Operations of both there Theorems, you have in the Examples of Section 2. Page 126, to which I refer
the Learner, fuppofing him by this Time to underftand them without any more Words than what is there expreffed.
II. To extract the Cube Root; viz. $a \operatorname{a} a=G$. Quære $a$.

Let $|$| 1 | $r+e=a$, fuppofing $r$ lefs than the true Root. |
| :--- | :--- |

$$
\begin{array}{c|c|c}
1 a^{2} & 2 & r r+3 r r e+3 r e e+e e c=a a a=G \\
2-r r r & 3 & 3 r e+3 r e e+e e e=G-r r r \\
3 \div 3 r & 4 & r e+e e+\frac{e e e}{3 r}=\frac{G-r r}{3 r}=D
\end{array}
$$

Let $\frac{\varepsilon e e}{3 r}$ be rejected or caft off, as being of fmall Value; then it will be, $r e+e e=D$, which gives this following

$$
\text { Theorem } \frac{D}{r+e}=e
$$

By this Theorem or Rule, the 1 it and 2d Examples in Cafe r . Page 132, are performed; the which being compared with this Theorem may be eafily underftood.

Again, Suppofe a a $a=G$, as before, and let $r$ be taken greater than the true Root.

$$
\begin{array}{c|c|l}
\text { Then } & \mathbf{I} & r-e=a \\
\mathbf{I} \mathbb{Q}^{3} & 2 & r r r-3 r r e+3 r e e=a^{3}=G \\
2 \pm & 3 & 3 r r e-3 r e e=r r r-G
\end{array}\left\{\begin{array}{l}
e e e \text { being rejected } \\
\text { as before. }
\end{array}\right.
$$

Which gives this Theorem $\frac{D}{r-e}=e$.
By this Theorem the third Example in Cafe 2. Page 133, is performed.
III. To extract the Biquadrate Root; viz. $a^{4}=G$. Quære $a$.

$$
\begin{array}{r|l|l}
\text { Let } & \mathrm{I} & r-e=a \text { fuppofing } r \text { lefs than juft. } \\
2-r^{4} & 2 & r^{4}+4 r r r e+6 r r e e=a^{4}=G \\
3 & 4 r r r e+6 r r e e=G-r^{4} \\
3 \div 2 r r & 4 & 2 r e+3 e e=\frac{G-r^{4}}{2 r r}=e .
\end{array}\left\{\begin{array}{l}
\text { rejecting all the } \\
\text { Powers of } e a ? \\
\text { bove } e e
\end{array}\right.
$$

Which gives this Theorem $\frac{D}{2 r+3 e}=e_{0}$

By this Theorem the Biquadrate Root of any Number may be extracted. But, as I have already faid, Page 1 34, thofe Extractions may be very well performed by two Extractions of the Square Root. Vide Example, Page 135.
IV. To extract the Surfolid Root, viz. $a^{5}=G$. Quære $a$.

If $r$ be taken lefs than juft, then $r+e=a$, as before, and $\frac{G-r^{5}}{5 r^{3}}=D$, which gives this Theorem $\frac{D}{r-2 e}=e$. By this Theorem the Surfolid Root, Example r, Page 36, is extracted. But if $r$ be taken greater than juft ; then $r-e=a$, and $\frac{r^{5}-G}{5 r^{3}}=D$, which gives this Theorem $\frac{D}{r-2 e}=e$. By this laft Theorem the Example in Page $\mathbf{I} 37^{\circ}$ is performed.

I prefume it needlefs to purfue the raifing of thofe Theorems, for extracting the Roots of Simple Powers, any further ; becaufe the Method of doing it is general, how high foever they are; and therefore it may be eafily underftood by what is already done.

## S E C T. 2.

NOtwithftanding I have already fhewed the Solution of Quaddratick Equations, two feveral Ways, viz. by caffing off the loweft Term; and by compleating the Square, vide Section 2. Page 195, $E_{c}$ c. Yet it may not be amifs to fhew, how thofe Equations may be refolved into Numbers by this Univerfal Method of continued Series; wherein, if the firft $r$ be taken equal to the firft true Root, or fingle Side of the Refolvend; and every fingle Value of $e$ (as it becomes found) be fill adided to it, for a new $r$, then thofe Rocts may be extracted without repeating a - fecond Operation, as before in the fingle Powers.

Cafe I. Let $a a+2 b a=G$. It is required to find the Value of $a$.

$$
\begin{array}{r|l|l}
\text { Put } & \mathbf{1} & r+e=a \\
\mathbf{1} G^{2} & 2 & r r+2 r e+e e=a a \\
\mathbf{1} \times 2 b & 3 & 2 b r+2 b e=2 b a \\
2+3 & 4 & r+2 b r+2 r e+2 b e+e e=a a+2 b a=G \\
4-r r \& c & 5 & 2 r e+2 b e+e e=G-r r-2 b r \\
5 \div \frac{1}{2} & 6 & r e+b e+\frac{1}{2} e e=\frac{1}{2} G-\frac{1}{2} r r-b r=D
\end{array}
$$

Which gives this Theorem $\frac{D}{r+b+\frac{1}{2}!}=\therefore$

Suppofe $b=364$, and $G=38692865$ : If $r=6000$, then $r r=36000000$, and $2 b r=4368000$. But $36000000+$ $4368000=40368000>38692865=G$. Therefore the firft $r<6000$. Let $r=5000$, then

$$
\begin{aligned}
& \text { Ift } r=5000 \\
& b=364 \\
& \text { Ift } r+b=5364 \\
& +\frac{1}{2} e=400 \\
& 1 \text { Divifor } 5764 \text { ) } \\
& 2 \mathrm{~d} r+b=6164 \\
& +\frac{1}{2} e=30 \\
& \text { 2. Divifor 6194) } \\
& 3^{\mathrm{d}} r+b=6224 \\
& +\frac{1}{2} e=3,5 \\
& 3 \text { Divifor } 6227,5 \\
& \left.\begin{array}{l}
\text { Firft } r=5000 \\
\quad+e=867
\end{array}\right\}=5867=a \text { as was required. }
\end{aligned}
$$

Cafe 2. If $a a-2 b a=G$, then proceeding as above, there will arife this Theorem $\frac{D}{r-b+\frac{1}{2} e}=e, 8 r c$. And in Cafe 3, viz. $2 b a-a a=G$, jou will have this Theorem $\frac{D}{b-r-\frac{1}{2} e}$ \&c. as above.

I think it needlefs to trouble the Reader with the Work of thefe two Theorems in Numbers; becaufe if the laft Example of Cafe I, be underftood, the other will be eafy. Not but that the Method of compleating the Square is very ready and eafy, as you may obferve by the Work in feveral Queftions of this Chapter.

## S E C T. 3.

IN the Solution of all Adfected Equations, that are above (or higher than) Quadraticks, it will be the beft way to take $r=$ the next nearell Root of the Equation: And then it will be $r+e$ $=a$, if $r$ be lefs than juft; or $r-e=a$ if $r$ be greater than juit (as at the Beginning of this Chapter). And all the Powers of the unknown Part of the Root, (viz. e) above it's Square (ee) are to be rejected or caft off, as before in raifing the Theorems for the Simple

Simple Powers. And therefore it is, that to fupply the want of thofe Powers (above ee in the Theorem) the Operation muft be repeated : as in the Example of extracting the Cube Root, Page 133, viz. when the Figures in the Root confift of more than three Places. (vide Page 140, and 141.)

$$
\text { Suppofe } a a a+b a=G \text {. Quære } a .
$$

| Let | $r+e=a$ viz. let $r$ be fuppofed lefs than juft. |  |
| :---: | :--- | :--- |
| $\mathbf{I} \bigotimes^{3}$ | 2 | $r r r+3 r r e+3 r e e=a a a$ |
| $1 \times b$ | 3 | $b r+b e=b a$ |
| $2+3$ | $r r r+b r+3 r r e+b e+3 r e e=a^{3}+b a=G$ |  |
| $4 \div 3 r$ | 5 | $\frac{1}{3} r r+\frac{1}{3} b+r e+\frac{b e}{3 r}+e e=\frac{G}{3 r}$ |
| $5-8 \mathrm{cc}$ | 6 | $r e+\frac{b e}{3 r}+e e=\frac{G}{3 r}-\frac{x}{3} r r-\frac{1}{3} b=D$. |

Which gives this Theorem $\frac{D}{r+\frac{b}{3 r}+e}=e$.
But if $r$ be taken greater than juft, then it will be $r e+\frac{b e}{3 r}$ $-e e=\frac{1}{2} r r+\frac{1}{3} b-\frac{G}{3 r}=D$, which produces this Theorem $\frac{D}{r+\frac{b}{3 r}-e}=e$.

By either of thefe two Theorems the Value of a may be eafily found. Or rather otherwife, as in the following Example.

Let $a a a+24 a=5879$ 14. Here $b=24$. Suppole the firft $r=90$, then $r^{3}=729000>587914$ without the $24 \times 90$ being added to it: Therefore $r<90$ Again, Suppofe $r=80$ then $r^{3}=512000$, and $24 r=1920$. But $512000+1920=513920$ ₹58791, hence 770 , but nearer to it than 90 . Therefore

> | it muft be | $\mathbf{I}$ | $r+e=a$ lefs than juft. |
| ---: | :---: | :---: |
| $\mathbf{I} @ Q^{3}$ | 2 | $r r r+3 r r e+3 r e e=a a a$ |
| $\mathbf{I} \times \overline{24}$ | 3 | $24 r+24 e=24 a$ |
| 2 in Numb. | 4 | $512000+19200 e+240 e e=$ |
| 3 in Numb. | 5 | $1920+24 e=24 a$ |
| $4+5$ | 6 | $513920+19224 e+240 e e:$ |
| $5-513920$ | 7 | $19224 e+240 e e=73994$ |
| $7 \div 240$ | 8 | $80,1 e+e e=308,3!=D$ |
| $8 \div$ | 9 | $e=\frac{D}{80,1+e}$ |


r Divifor ${ }^{+}=\frac{3}{83,1)}$

$$
308,31\left(\begin{array}{l}
80,68=r \\
3,68 \text { c. }=e
\end{array}\right.
$$

$+e=\frac{3,6}{80,7)} \quad \frac{249,3}{59,01} \quad 8,688 \mathrm{cc}=r+e$
+e $\frac{, 67}{87,37)}$

$$
\frac{52,02}{6,99} \& c .
$$

Or rather new $r=83,7$ for a fecond Operation, which being involved and tried (as above) will be found greater than juft: therefore

| it muft be | 1 | $r-e=a$ |
| :---: | :---: | :---: |
| 1 (6) $^{3}$ | 2 | $r r r-3 r r e+3 r e e=a a a$ |
| $1 \times 24$ | 3 | $24 r-24 . e=24 a$ |
| 2 in Numb. | 4 | 586376,253-21017,07e $+251,1 \mathrm{lee}=$ aaa |
| 3 in Numb. | 5 | 2008,8- $24 e=24 a$ |
| $4+5$ | 6 | $588385,053-21041,07 e+251,18 e=58791$ |
| $6+$ | 7 | 21041,07e-251,1ee $=471,053$ |
| $7 \div 251,1$ | 8 | $83,7955^{e-e e=1,87595778=D}$ |
| $8 \div$ | 9 | D |

2d Operation 83,7955

| If Divifor ${ }^{e}=\frac{, 02}{83,7755)}$ | $\mathbf{1}, 87595778$ | $\left(\begin{array}{l} 83,70000000=r \\ 00,0223933 \mathrm{I}=e \end{array}\right.$ |
| :---: | :---: | :---: |
| $-e=, 022$ | 1,675510 | $83,67760669=a=$ |
| 2d Divifor 83,7535) | ,2004477 | e |
| $-e=, 0023$ | ,1675070 |  |
| 3 d Divifor $\overline{83,7512)}$ | ,03294078 |  |
| $-e=3$ 3 c. | -02512536 |  |
| 83,751 | ,00781542 |  |
|  | 00753760 |  |
| Here the new Divifors are | 27782 |  |
| rejected, as infignificant. | 2.5125 |  |
|  | 2657 |  |
|  | 2512 |  |
|  | 145 |  |
|  | 83 |  |

[^4]But if more Exactnefs be required, you may make the new $r=83,6776067$, and proceed with it to a third Operation; which will afford twenty-feven Places of Figures for the Value of $a$; that is, every Operation will produce triple the Places of Figures to thofe of the Precedent $r$. And this tripling the Places of Figures in the Root, at every Operation, holds good, and is to be obferved in the Solution of all Adfected Equations (how high foever they are) according to this Method of refolving them. See Page 141.

Example 2. Suppore $a a a-b a=G$. Quære a. If $r+e$ $=a$, then $r e-\frac{\frac{1}{3} b e}{r}+c e=\frac{\frac{1}{3} G}{r}+\frac{r}{3} b-\frac{r}{3} r r=D$, which gives this Theorem $\frac{D}{r-\frac{\frac{1}{3} b}{r}+e}=e$. But if $r-e$
$=a$, then $r e+\frac{\frac{7}{3} b e}{r}+e e=\frac{\frac{1}{3} G}{r}+\frac{1}{3} b-\frac{1}{3} r r=D$, which gives this Theorem

$$
\frac{D}{r+\frac{\frac{1}{3} b}{r}+e}
$$

Or you may proceed otherwife, as in the laft Example. Let $a a a-6438 a=104785688$, here $b=643^{8}$. Suppofe the firft $r=500, r r r=125000000$, and $b r=3219000$, then $125000000-3219000=121781000$. But 1217810007 104785688, therefore $r<500$. Again, fuppofe $r=400$, rrr $=64000000$, and $b r=2575200$, then will 64000000 $-2575200=6142800$. But $61424800<104785688$, hence $r>400$; confequently $r$ is betwixt 400 and 500 . But 500 is the next neareft; therefore, let $r=500$ being greater than juft.

| Then |  | $r-e=a$ |
| :---: | :---: | :---: |
| $10^{+1}$ | 2 | rrr-3rre+3ree=aaa |
| $1 \times b$ | 3 | $b r-b e=b a$ |
| 2 in Numb. | 4 | 125000000-750000e+1500ee=aaa |
| 3 in Numb. | 5 | $3219000-6438 e=6438 a$ |
| $4-5$ | 6 | $121781000-743562 e+1500 e e=104785688$ |
| $6+$ | 7 | $743562-1500 e \theta=16995312$ |
| $7 \div \overline{1500}$ | 8 | $495 e-e e=11330=D$ |
|  | 9 | - D |

Chap. 10 .
Operation 495

$$
\begin{aligned}
& \text { I Divifor } \frac{20}{475)} \quad \text { II330 }\left(\begin{array}{l}
500,0=r \\
23,8=e
\end{array}\right. \\
& -e=\frac{3}{472)} \quad \frac{950}{1830} \quad 470,2=r-c=a \\
& \frac{1416}{414,0} \\
& \text { 377,6 }
\end{aligned}
$$

Let new $r=476$ for a 2d Operation, then $r^{3}=107850176$ and $b r=3064488:$ but $107850176-3064488=104785688$ the fame with the Refolvend. Confequently $a=476$ jurt.

Example 3. Let $b a-a a a=G$. Quære a. If $r+\varepsilon=a$, then $\frac{\frac{1}{2} b e}{r}-r e-e e=\frac{\frac{1}{3} G}{r}+\frac{1}{3} r r-\frac{1}{3} b=D$, which gives this Theorem $\frac{D}{\frac{\frac{7}{3} b}{r}-r e}=e$. But if $r-e=a$, then $r e-\frac{\frac{1}{3} b e}{r}$ $-e e=\frac{\frac{1}{3} G}{r}+\frac{1}{3} r r-\frac{1}{3} b=D$, which gives this Theorem $\frac{D}{r-\frac{\frac{1}{3} b}{r}-e}=e$.

Or otherwife as before in the two laft Examples. Thus, let $123456 a-a a a=12272861$. Here $b=123456$. Suppofe the firft $r=200$, then $r r r=8000000$, and $b r=24691200$; then $24691200-8000000=166 \mathrm{~g}_{1200}$, but $16691200>1227286 \mathrm{I}$, therefore $r$ is here lefs than juft, becaufe the higheft Power is -, or Negative. Again, Suppofe $r=300$, then $r^{3}=27000000$, and $b r=37036800$, then $37036800-27000000=10036800$ ©12272861. Confequently $r<300$, and $r>200$. Let $r$ $=300$, being the next neareft, but more than juft.

| Then | 1 | $r-e=a$ |
| :---: | :---: | :---: |
| $1{ }^{\text {c }}$, ${ }^{\text {a }}$ | 2 | $r r r-3 r r e+3 r e e=a a a$ |
| $1 \times b$ | 3 | $b r-b e=b a$ |
| Numb. | 4 | 27000000-270000e +900ee |
| Numb. | 5 | 37036800-123456e |
| $5-4$ | 6 | $10036800+146544 e-900 e e=12272861$ |
| 6 | 7 | $146544 \mathrm{e}-900 \mathrm{ee}=2236061$ |
| $\div \overline{900}$ | 8 | $162 e-e e=2484=D$ |
| $\div 8 c$. | 9 | $e=\frac{D}{162}$ |



Or new $r=283$, which being involved, $\varepsilon^{\circ} c$. will appear to be the true Root, that is, $a=283$ juft.

Note, Thefe are ufually called the three Forms of Cubick Equations; and in the Solution of the third or laft Form, viz. $b a-a a a=G$, you may meet with fome feeming Difficulties; efpecially in making Choice of the firft $r$, becaufe this Equation is an ambiguous Equation, and hath two Affirmative Roots, viz. a greater and leffer Root. But having once found either of them, the other may be eafily obtained by Divifion only; as in the Quadratick Equations. Vide Chap. 8. As for Infance, in the laft Example, $a=283$ and $123456 a-a a a=12272861$. Make thefe two Equations $=0$, to wit, let $a-283=0$, and $-a a a+123456 a-12272861=0$.

$$
\begin{array}{rlr}
\text { Then, } a-283) & \begin{array}{cc}
-a a a+123456 a-12272861 & (-a a \\
& =a a+283 a a \\
& \frac{1}{-283 a a+123456 a}
\end{array} & (-283 a \\
\frac{-283 a+180 c 89 a}{+4367 a-12272861} & (+43367
\end{array}
$$

Hence it appears that $-a a-283 a+433^{6} 7=0$. Confequently $a a+283 a=43367$ this Equation being folved, $a=110$, $2722 \delta^{\circ} c$. which is the leffer Root of the aforefaid Equation ba -aaa- $G$, \&c. After this Manner all the poffible and impoffible Roots of any Equation may be eafily difcovered, any one of it's Roots being once found. I fhall therefore omit inferting more Examples of that kind.

Suppore $a a a+b a a+c a=G$. Quære $a$. Let $b=74, c=8729$, and $G=560783$. By Trial (as before) it will be found that the next neareft $r=40$ being fomething lefs than juft.

Therefore

Chap. 10

| Therefore | 1 | $r+e=a$ |
| :---: | :---: | :---: |
| $1 \times c$ | 2 | $c r+c e=c a$ |
| 1 O $^{2}{ }^{2}: \times b$ | 3 | $b r r+2 b r e+b e e=b a a$ |
| $1{ }^{2} 3$ | 4 | $r r r+3 r r e+3 r e e=a a a$ |
| 2 in Numb | 5 | $349160+8729 e$ |
| 3 in Numb. | 6 | $118400+5920 e+74 e e$ |
| 4 in Numb. |  | $64000+4800 e+120 e e$ |
| $5+6+7$ |  | $531560+19449 e+194 e e=560783$ |
| $8-531560$ | 9 | $19449 e+1946 e=29223$ |
| $9 \div \overline{194}$ | 10 | $100,2 e+e e=153,05=D$ |

Operation 100,2

$$
\begin{array}{ll}
\begin{array}{l}
+e= \\
\text { At Divifor } \\
+e
\end{array} & \frac{1}{101,2)} \\
\text { d Divifor } & \frac{5}{101,7)}
\end{array} \quad \begin{aligned}
& 153,05 \\
&
\end{aligned}
$$

Or new $r=4 \mathrm{I}, 5$ for a fecond Operation, which being duly involved, $E^{2} c$. will be found more than juft.
Therefore
Then $\left\{\begin{array}{l|l}2 & \begin{array}{l}c r-c e=c a \\ 3 \\ b r r-2 b r e+b e e=b a a \\ 4\end{array} \\ \text { rrr-3rre+3rce=aaa}\end{array}\right.$
Thefe being turned into Numbers, $\mathcal{E}^{\circ} c_{\text {. }}$ as above, they will be $20037,75 e-198,5 \mathrm{ee}=390,375$, which being divided by 198,5 the Co-efficient of $e e$, will become $100,946 e-e e=$ 1,966 fi24, \&c. $=D$.
Operation 100,946
In Divifor $\frac{01}{100,930)} \quad$ r,966624 $\quad \begin{array}{r}4 \mathrm{r}, 5000000=r \\ , 0194847=e\end{array}$

I i 2
Let

Let the laft Equation in the Enigma, Chap. 9. be here propofed for a Solution. Viz. aaaa+baaa-caa-da=-G; $b=2, c=288, d=506$, and $G=1513$, Quare $a$. By Trials it will be found, that the next neareft $r=20$, being fomething more than juft.

| Therefore | 1 | $r-e=a$ |
| ---: | :--- | :--- |
| $1 \times d$ | 2 | $d r-d e=d a$ |
| $1 Q^{2} \times c$ | 3 | $c r r-2 c r e+c e e=c a a$ |
| $1 Q^{3} \times b$ | 4 | $b r r r-3 b r r e+3 b r e e=b a a a$ |
| $1 Q^{4}$ | 5 | $r^{4}-4 r r r e+6 r r e e=a a b a$ |

Thefe being turned into Numbers, and thofe duly collected, according as the Signs of the Equation direct, they will become $50680-22374 e+2232 e e=1513$, which being all divided by 2232 the Co-efficient of ee, will be $10 e-e e=22=D$.

$$
\text { Then } \frac{D}{10-e}=e
$$

Operation
$\underset{\text { Divifor }}{-e}=\frac{3}{7)}$

By what hath been already done about the Solution of thefe few Equations (being carefully obferved) I prefume the Learner will eafily conceive how to proceed in the Solution of all Kinds of Equations, be they never fo high, or adfected; therefore I fhall not here propofe many various Examples, but only take them as they fall in Courfe, when I come to the next Part, wherein you will (perhans) find fuch Equations with their Solutions as are not common.

## C H A P. XI. <br> Of Simple इutereff, Amnuitief, or Penfions, \&x.

INTEREST, or the Ufe paid for the Loan of Money, is either Simple, or Compound.

## Sect. 3. Of simple 3ntereff.

SIMPLE Interef, is that which is paid for the Loan of any Principal or Sum of Money, lent out for fome Time, at any Rate per Cent. agreed on between the Borrower and the Lender; which, according to the late Laws of England, ought to be fix Pounds for the Ufe of 100 l. for one Year, and twelve Pounds for the Ufe of 100 l . for two Years; and foon for a greater, or leffer Sum, proportionable to the Time propofed.

There are feveral Ways of computing (or anfwering Quefions about) Simple Intereft ; as by the fingle and double Rule of Three (See Page 96, \&ic.) others make ufe of Tables compofed at feveral Rates per Cent. as Sir Samuel Moreland, in his Doctrine of Intereft, both fimple and compound, all performed by Tables; wherein he hath detected feveral material Errors committed by Sir Ifaac Newton, Mr Kerfey upon Wingate, and Mr Clavil, \&c. in the Bufinefs of computing Intereft, $\varepsilon^{\circ} c$. by their Tables, too tedious to be here repeated. But I frall in this Tract take other Methods, and Shew that ail Computations relating to Simple Intereft are grounded upon Arithmetick Progreffion ; and from thence raife fuch general Theorems, as will fuit with all Cafes. In order to that

$$
\text { Let }\left\{\begin{array}{l}
P=\text { any Principal or Sum put to Interef. } \\
R=\text { the Ratio of the Rate, per Cent. per Anmum. } \\
t=\text { the Time of the Principal's Continuance at Intereft. } \\
A=\text { the Amount of the Principal, and it's Intereft. }
\end{array}\right.
$$

Note, The Ratio of the Rate, is only the Simple Interen of $\mathbf{1}$ l. for one Year, at any given Rate; and is thus found. Viz. $100: 6:: 1: 0,06=$ the Ratio at 6 per Cent. per Annum. Or $100: 7:: 1: 0,07=$ the Ratio at 7 per Cent. \&c. Again 100: $7,5:: 1: 0,075=$ the Ratio at 7 and $\frac{x}{2}$ per Cent.

And if the given Time be whole Years; then $t=$ the Number of whole Years: but if the Time given, be either pure Parts of a Year, or Parts of a Year mixed with Years; thofe Parts muft be turned into Decimals; and then $t=$ thofe Decimals, ${ }^{\circ} \mathrm{c}$.

Now the common Parts of a Year may be eafily turned or converted into Decimal Parts, if it be confidered
That one $\left\{\begin{array}{l}\text { Day is the } \frac{1}{\sqrt{6} \frac{1}{5}} \text { Part of a Year }=0,00274 \text { ferè } \\ \text { Month is the } \frac{1}{12} \text { Part of a Year }=0,0833333 \text { \&c. } \\ \text { Q }\end{array}\right.$ Quarter is the $\frac{x}{4}$ Part of a Year $=0,2.5$
Thefe Things being premifed, we may proceed to raifing the Theorems.

Let $R=$ the Intereft of $I l$. for one Year, as before.
Then $2 R=$ the Intereft of $\mathrm{I} l$. for two Years.
And $3 R=$ the Intereft of $1 l$. for three Years.
$4 R=$ the Intereft of $I l$. for four Years. And fo on for any Number of Years propofed.

Hence it is plain, that the Simple Intereft of one Pound is a Series of Terms in Arithmetic Progreffion increafing; whofe firft Term and common Difference is $R$, and the Number of all the Terms is $t$. Therefore the laft Term will always be $t R=$ the Intereft of $1 l$ for any given Term fignified by $t$.
Then $\left\{\begin{array}{l}\text { As one Pound }: \text { is to the Intergft of } 11 .:: \text { fo is any } \\ \text { Po }\end{array}\right.$ \{Principal or given Sum : to it's Intereft.
That is, $1 l$. $: t R:: P: t R P=$ the Intereft of $P$. Then the Principal being added to it's Intereft, their Sum will be $=A$ the Amount required; which gives this general Theorem.

$$
\text { Theorem 1. } \quad i R P+P=A
$$

From whence the three following Theorems are eafily deduced.
Theorem 2. $\frac{A}{t K+1}=P . \quad$ Theorem 3. $\frac{A-P}{t P}=R$.

$$
\text { Theorem 4. } \frac{A-P}{R P}=t
$$

Thefe four Theorems refolve all Queftions about Simple Intereft.
2ucfion 1. What will 2561.10s, amount to in 3 Years, one 2 uarter, 2 Months, and 18 Days, at 6 per Cent. per Annum. Here is given $P=256,5 ; R=0,06$; and $t=3,46599$
For 3 Years $=3 \quad$ Quære $A$. per Theorem $\mathbf{I}$. one Quarter $=0,25$
2 Months $=0,16667=0,08333 \times 2$
18 Days $=0,0,493^{2}-0,00274 \times 18$
Hence $t=3,40599: \times 0,06=0,2079594=t R$
Then $0,2079594 \times 256,5=53,341586=t R P$
And $53,341586+256,5=309,841586=t R P+P=A$.
That is, $309,841586=309$ l. 16s. 10 d. being the Anfwer required.
Chap. II. Of Eimple Gliteceff. 247

Queftion 2. "'jot Principal or Sum being put to Intereft, will raije a Soock of 30 g 1.16 s .10 d . in three Years, one Quarter, two Months, and 18 Days; at 6 per Cent. per Annum?

## Or the fame Queftion otherwife fated thus.

What is 3 col. 16 s . Iod. due 3 Tears, one Quarter, 2 Months and 18 Days bence, worth in ready Money; abating or difoounting 6 per Cent. \& c.

Here is given $A=309,841586 ; R=0,06 ; t=3,46599$ (found as before) thence to find P. Per Theorem 2. Firft $3,46599 \times 0,06=0,2079594=t R$. Then
$t R+1=1,2079594) 309,841586=A(256,5=P ;$ that is, $256,5=256$ l. 10 s. the Anfwer required.

Quefion 3. At what Rate or Interef, per Cent. \&xc. will 2561. Ios. amount to 309 l .16 s . 10 d . in three Years, one Quarter, two Months, and 18 Days?

Here is given, $P=256,5 ; A=309,841586$; and $t=3,46599$ to find $R$. Per Theorem 3. Firlt 309,841585-256,5 = $53,341586=A-P$. Next $3,4,6599 \times 256,5=889,026435$ $=t R$. And $t R=889,025435) 53,341586(00,06=$ the Ratic. Then $1 l .: 0,06:: 120: 6=$ the Rate required.

Quefion 4. In what Time will 2561. 10s. raife a Stock of (or allount to) 30 l l. 16 s . Io d. at 6 per Cent. \&cc.

Here is given, $P=256,5 ; A=309,841586$, and $R=0,06$ to find $t$. Per Theorem 4. Firlt 309,841586-256,5 = $53,341586=A-P$. And $250,5 \times 0,06=15,39=P R$. Then 15,39$) 53,341585(3,46599=t$; that is $t=3$ Years and , 46599 Decimal Parts of a Year; which may be brought into common Parts of a Year, thus
0,46599

$\frac{0,2=0 \text { one Quarter. }}{0,21599} \quad$| And 0,08333$) 0,21599$ (2 Months. |
| ---: |
| $0,02074), 04933 \cdot(18$ Days. |

Hence $t=3$ Years, one Quarter, 2 Months, and 18 Days; the Anfwer required.

It muft needs be ealy to conceive, that what is here done at 6 per Cent. may be done at any other Rate of Intereft, by forming the Ratio (viz, $R$ ) accordingly.

SCHOLIUM.

## S C H O LIUM.

Although it be according to the Laws and Cuftom of England, to compute Intereft at the Proportion of 6 per Cent. (as ahove) yet he that takes up $\mathrm{M}_{\mathrm{n}} \mathrm{F}$ at Intereit for any Time lefs than even or compleat Years, pays more Intereft than feems reafonably due, according to the Rules of Art. As for Infance; if $100 \%$. be forborne at Interelt one whole Year, it amounts to 106 l . But (I fay) if it be paid at the half Year's End, it fhould not amount to 103 ; as appears from this following Proportion.

Let $a=$ the Amount due at the balf Year's End; then it will be $100: a:: a: 106$ the Amount at the Year's End. Ergo $a a=10600$, and $a=\sqrt{ } 10600=102,9563=102$ l. 19s. $1 \frac{1}{2} d$. which is lefs than $103 \%$ by $10 \frac{1}{2} \%$. And if it be paid in lefs than half a Year's Time, the Error muft needs be the greater.

Sect. 2. Of Gntutitieg, or fpentions in Arrears, computed at Simple Intereff.

AN NUITIES, or Penfions, $E^{\circ} c$. are faid to be in Arrears, when they are payable or due, either Yearly, or Half-yearly, $\mathrm{E}^{\circ} c$. and are unpaid for any Number of Payments. Therefore the Bufinefs is, to compute what all thofe Payments will amount unto, allowing any Rate of Simple Intereft for their Forbearance, from the Time each particular Payment became due: Now in order to that,
$\left\{u=\right.$ the Annuity, Penfion, or Yearly Rent, $\xi_{i}$.
Put $\left\{\begin{array}{l}t=\text { the Time of it's Continuance, or being unpaid. } \\ R=\text { the Ratio, or Interent of } \mathrm{I} l \text {. for I Year, as before. } \\ A=\text { the Amount of }\end{array}\right.$ $A=$ the Amount of the Annuity and it's Intereft.
Then if $u=$ the firft Year's Rent, due without InterdR.
$\left.\begin{array}{rl}R u & =\text { the Intereft } \\ 2 u & =\text { the Rent }\end{array}\right\}$ due at the End of the fecond Year.
$\left.\begin{array}{rl}2 R u & =\text { the Intereft } \\ 3 u & =\text { the Rent }\end{array}\right\}$ due at the End of the third Year.
$3 R u=$ the Intereft $\}$
$4 u=$ the Rent $\}$ due at the End of the fourth Year.
$4 R u=$ the Intereft $\}$
$5 u=$ the Rent $\}$ due at the End of the fifth Year.
And fo on for any Number of Years. Hence it is evident, that $R u+2 R u+3 R u+4 R u+5 u=A$ the Sum of all the Rents and their Intereft, being forborne 5 Yearl

Chap. II.
From whence it follows, that $R u+2 R u+3 R u+4 R u=A-t u$. Here $t=5$. Divide by $u$, then $R+2 R+3 R+4 R=\frac{A-t u}{u}$.

Next to find the Sum of this Progreffion (See Page 185) thus, Let $R+2 R+3 R+4 R \& \mathrm{cc}=z$, thęn $\mathrm{I}+2+3+48 \mathrm{c} .=\frac{z}{\bar{R}}$. Here the Sum of the firft and laft Terms are $4+\mathrm{I}=5=t$, and the Numbers of all the Terms is $4=t-1$. Therefore $\frac{t-1}{2} \times t=$ the Sum of all the Terms ; that is, $\frac{t t-t}{2}=\frac{z}{R}$ : hence $\frac{t t R-t R}{2}=z$. Confequently $\frac{t t R-t R}{2}=\frac{-t u}{u}$.
Now from this Equation it will be eafy to deduce the following Theorems.
Theorem $\mathrm{I} . \frac{t R u-t R u+2 t u}{2}=A$, or $\frac{t t u-t u}{2}=R:+t u=A_{0}$ Theorem 2. $\frac{2 A}{t t R-t R+2 t}=u$. Theorem 3. $\frac{2 A-2 t u}{t t u-t u}=R$ : Let $\frac{2}{R}-1=x$, then $t=\sqrt{\frac{2 A}{R u}+\frac{x x}{4}}:-\frac{1}{2} \times$ Theorem 4 .

Queftion 1. If 2501. yearly Rent (or Penfion, \&c.) be forborn or unpaid feven Mars; what will it amount to in that Time, at 6 per Cent. for each Payment, as it becomes due?

Here is given $u=250, t=7$, and $R=0,06$; to find $A$. Per Th. 1. Firft $250 \times 7=1750=t u, 1750 \times 7=\mathbf{1 2 2 5 0}=\boldsymbol{t} t u$. Again $12250-1750=10500=t t u-t u$, and $\frac{10500}{2} \times 0,06=315^{\circ}$ Laflity $3{ }^{1} 5+1750=2065=A$; Viz. 2065 l. is the Anfw.required.

Put if the Annuity, Rent, or Penfion, is to be paid by Quarter1; or half yearly Payments, $\mathcal{\theta}^{\circ} c$. Then $\frac{0.06}{2}=0,03=R$ for half yearly Payments: and $\frac{0,06}{4}=0,015=R$ for quarterly; or $0,045=R$ for three quarterly Payments. Example of half y Prily Paymerts.

Suppofe 2501. per Annum, to be paid by half yearly Payments, ere in Arrears, or unpaid for feven Years; wbat would it amount allowing 6 per Cent. per Annum for eacb Payment, as it befaves due?

In this Example there is given $u=125=\frac{25}{2} \circ ; t=14$ the Number of Payments; and $R=0,03=\frac{0,06}{2}$; thence to find $A$.

Firft $125 \times 14=1750=t u ; 1750 \times 14=24500=t i u:$ again $24500-1750=22750=t t u-t u$; then $\frac{22750}{2}=11375$, and $11375 \times 0,03=341,25$. Lafly $341,25+1750=2091,25$; that is, $A=2091 l .5$ s. the Anfwer required.
$N . B$. Hence it may be obferved, that half yearly Payments are more advantageous than yearly. For 209ıl. 5 s. $>2065 l$. by 261.5 s. confequently, quarterly Payments are more advantageous than half yearly Payments.

2uefion 2. What yearly Rent, Penfion, \&cc. being forborn or unpaid feven Years, will raife a Stock of 20651. allowing 6 per Cent. per Annum for each Payment, as it becomes due?

Here is given $A=2065, t=7$, and $R=0,06$; to find $u$. Per Theorem 2. Firft $7 \times 0,06=0,42=t R$, and $0,42 \times 7$ $=2,94=t t R$. Then $t t R-t R=2,52$. Laftly $t t R$ - $t R+2 t=16,52) 4130=2 A(250=u$; that is, $250 \%$. per Annum, \&c. will raife $2065 l$. the Stock required.

Quefion 3. In what Time will 2501. yearly Rent raife a Stock of 2065 1. allowing 6 per Cent. $E^{\circ} c$. for the Forbearance of the Payments as they become due?

Here is given $u=250, A=2065$, and $R=0,06$; to find $t$. $P_{\text {er Theorem 4. Firft }} \frac{2}{R}=\frac{06}{2}=33,3333$; and 33,3333$\mathbf{I}=3^{2}, 3333=x=\frac{2}{K}-\mathbf{I}$. Then $16,16666 \& \mathrm{c} .=\frac{1}{2} x ;$ $26 \mathrm{r}, 3605 \& \mathrm{c} .=\frac{1}{4} x x$. Again $\frac{41,30}{15}=275,333=2 A \div R u$, and $275,3333+261,3605=536,6938=\frac{2 A}{R u}+\frac{1}{4} x x$. Then $\checkmark 536,6938=23,1666$. Laftly, 23,1666-16,1666 = 7 $=t$ the Time required.

2uefion 4. If 2501 ycarly Rent, being forborn feven Hears, will amount to 2065 1. allowing Simple Intereft for every Payment as it becomes due; what muft the Rate of the Intereft be per Cent. Ec.?

Here is given $u=250, A=2065$, and $t=73$ to find $R$ : Per Theorem 3.

$$
\text { Thus }\left\{\begin{aligned}
t t u & =12250 \\
t u & =1750
\end{aligned}\right\}\left\{\begin{array}{l}
4130=2 A \\
3500=2 t u \\
630
\end{array}=2 A-2 t u(0,06=R\right.
$$

Then 1:0,06::100:6 the Rate required.

Sect. 3. The fezerent Worth of Annuities or Penfons, \&cc. computed at Simple Intereft.

THE Bufinefs of purchafing Annuities, or taking of Leafes, $\xi^{\circ} c$. for any affigned Time, depends upon the true equating of the Principal or Money laid out on the Purchafe, with the Annuity orYearly Rent, by allowing (or difcompting) the fame Rate of Intereft to both Parties. Which may be eafily performed by duly applying the refpective Theorems of the two laft Sections together; as will fully appear by the following Queftion.

Quefion 1. What is 751. yearly Rent, to continue nine Years, worth in ready Money, at 6 per Cent. per Annum Simple Interef?

1. Per Theorem I. of the laft Section, find what the propofed yearly Rent would amount to, if it were forborn 9 Years, at 6 per Cent.

Thus $u=75, t=9$, and $R=0,06: \quad$ Quære $A$.

$$
\begin{aligned}
& \left.\begin{array}{rlrl}
t t u & =6075 & \text { Then 2) } 5400(2700 \\
t u & =\underline{675} & R=\underline{0,06}
\end{array}\right\} \text { Multiply } \\
& +t u=\overline{162,}\}=837=A .
\end{aligned}
$$

2. Then by Theorem 2. Section 1. find what Principal, being put to Intereft for the fame Time, and at the fame Rate, will amount to $837 \%$. $=A$. Thus $t R=0,54=9 \times 0,06 ; t R+1$ $=1,54) 837\left(543,5064=P\right.$ : that is, $P=543 \mathrm{l}$. 10 s. $1 \frac{1}{2} d_{\text {. }}$ which is the Worth of $75 \%$ a Year, as was required.

From the Work of thefe two Operations (duly confidered) it muft needs be eafy to conceive, how the two Theorems by which they were performed, may be combined in one.
For 1. $\frac{t R u-t R u+2 t u}{2}=A$; and 2. $P t R+P=A_{p}$
Confequently $P t R+P=\frac{t t R u-t R u+2 t u}{2}$. And from this Equation may be deduced the following $T$ Theorems.
Theorem $1 . \frac{t t R u-t R u+2 t u}{2 t R+2}=P$, or $\frac{t t R-t R+2 t}{2 t R+2} \times u=P$.
By this Theorem all Queftions of the fame Kind with the laft (viz. that above) may be eafily and readily anfwered at one Operation.

Theorem 2. $\frac{2 P t R+2 P}{t t R-t R+2 t}=u$, or $\frac{t R+1}{t t R-t R+2 t}: \times 2 P=u$.

$$
\text { Theorem 3. } \frac{2 P-2 t u}{t t u-t u-2 P t}=R .
$$

Let $\frac{2}{R}-\frac{2 P}{u}-1=x$, then will $t t \pm x t=\frac{2 P}{R u}$.
Which gives this Theorem 4. $\sqrt{\frac{2 P}{R u}+\frac{x x}{u}}: \pm \frac{x}{2}=t$.
By the fecond and fourth Theorems, two very ufeful Queftions may be eafily anfwered.

1. As for Inftance: If it be required to find what Annuity, or yearly Rent, \&c. may be purchafed, for any propofed Sum, to continue any affigned Time, allowing any Rate of Intereft?

This Queftion may be anfwered by Theorem 2.
2. Again: If it be required to find bow long any yearly Rent, Penfion, or Annuity, \&c. may be purchafed (or enjoyed) for any propofed Sum, at any given Rate of Intereft?

All Queftions of this Kind are eafily anfwered by Theorem 4.
In thefe Queftions it is fuppoled, that the Purchafe, or yearly Rent, is to commence or be immediately entered upon. But if it be required to find the $V$ alue or Purchafe of an Annuity or yearly Rent, $\varepsilon^{\circ} c$. in Reverfion; that is, when it is not to be entered upon until after fome Time, or Number of Years are paft; then you muft firft find what the Sum propofed to be laid out in the Purchafe, would amount to, if it were put to Intereft, during the Time the Annuity, $\varepsilon c$. is not to be put in prefent Poffefion; and make that A mount the Sum for the Purchafe, proceeding with it as in either of the two laft Queftions, Eg'c.

Note, From the firf Quefion of this Sektion it will be eafy to conceive bow to perform the Equation of Payments, between Debtor or Creditor, at any Rate of Iniereft, without doing any Damage to either Party.

That is, when feveral Sums of Money are to be paid, at feveral different Times, to find the Time when all the Fayments may be truly difcharged at once: as if one Sum were to be paid at the End of two Months, another at fix Months, and perhaps a third Sum at eight Months end, $E^{\circ} c$. And if it were required to find the Time when all thofe Sums may be truly difcharged at one Payment without Lofs, $E^{\circ} c$.

## C H A P. XII. <br> Of Campouni Intereft, and Annuities, $\mathcal{E}^{\circ}$.

COMPO U ND Intereft is that which arifes from any Principal and it's Intereft put together, as the Intereft fo becomes due; fo that at every Payment, or at the Time when the Payments became due, there is created a new Principal; and for that Keafon it is called Intereft upon Intereft, or Compound Intereft.

As for Infance; Suppofe $100 \%$. were lent out for two Years, at 6 per Cent. per Annum, Compound Intereft: then at the End of the firft Year, it will only amount to 106 l . as in Simple Intereft. But for the fecond Year this $106 \%$. becomes Principal, which will amount to $112 l .7 \mathrm{~s} .2 \frac{1}{2} \mathrm{~d}$. at the fecond Year's End, whereas by Simple Intereft it would have amounted to but 1 I $2 \%$.

And altho' it be not lawiul to let out Money at Compound Intereft; yet in purchafing of Annuities or Penifons, $\mathcal{E}^{\circ}$. and taking Leafes in Reverfion, it is very ufual to allow Compound Intereft to the Purchafer for his ready Money; and therefore it is very requifite to underfand it.

## Sect. i. Of Campamin Interef.

Let $\left\{\begin{array}{l}P=\text { the Principal put to Intereft. } \\ t=\text { the Time of it's Continuance. } \\ A=\text { the Amount of the Principal and Intereft. }\end{array}\right\}$ as before.
Viz. $100: 106:: 1: 1,06=$ the Amount of 1 l. at 6 per Cent. Or $100: 105:: 1: 1,05=$ the Amount of $1 l$. at 5 per Cent. and fo on for any other affigned Rate of Interef.
Then if $R=$ the Amount of $\mathrm{I} l$. for one Year, at any Rate.
$R^{2}=$ the Amount of il. for two Years.
$R^{3}=$ the Amount of $1 l$. for three Years.
$R^{4}=$ the Amount of $1 \%$. for four Years.
$R^{s}=$ the Amount of $\mathrm{y} l$. for five Years, Here $t=5$
For $1: R:: R: R R:: R R: R R R:: R R R: R^{4}:: R^{4}: R^{5}: \& \mathrm{cc}$, in $\div \div$.
That is $\left\{\begin{array}{l}\text { As one Pound }: \text { is to the Amount of one Pound at one } \\ \text { Year's End }:: \text { fo is that Amount }: \text { to the Amount of } \\ \text { one Pound at two Years End, } \xi^{\circ} \text {. }\end{array}\right.$

Whence it is plain, that Compound Intereft is grounded upon a Series of Terms, inereafing in Geometrical Proportion continued; wherein $t$ (viz. the Number of Years) does always affign the Index of the laft and higheft Term : Viz. the Power of $R$, which is $R^{t}$.

Again, As $1: R^{t}:: P: P R^{t}=A$ the Amount of $P$ for the Time that $R^{t}=$ the Amount of $I l$.
That is $\left\{\begin{array}{l}\text { As one Pound }: \text { is to the Amount of one Pound for any } \\ \text { given Time }:: \text { So is any propofed Principal (or Sum) to } \\ \text { it's Amount for the fame Time. }\end{array}\right.$
From the Premifes (I prefume) the Reafon of the following Theorems, may be very eafily underftood.

Theorem I. $P R^{t}=A$, as above.
From hence the two following Thearems are eafily deduced.

$$
\text { Theorem 2. } \frac{A}{R^{t}}=P . \quad \text { Theorem 3. } \quad \frac{A}{P}=R ?
$$

By thefe three Theorems, all Queftions about Compound Intereft may be truly refolved by the Pen only, viz. without Tables; tho' not fo readily as hy the Help of Tables, calculated on purpofe; as will appear farther on.

Queftion 1. What will 2561. 10 s. amount to in feven $Y_{\text {ears, }}$ at 6 per Cent. per Annum, Compound Interef?

Here is given $P=256,5 ; t=7$; and $R=1,06$ which being involved until it's Index $=t$ (viz. 7.) will become $R^{7}=$ 1,50363. Then $1,50363 \times 256,5=385,6811=A=385 \%$. 23 s. $7 \frac{\frac{1}{2}}{2} d$. which is the Anfwer required.

Quefion 2. What Principal or Sum of Money muft be put (or let) out to raife a Stock of 3851 . 13 s. $7 \frac{1}{2} \mathrm{~d}$. in Seven Years, at 6 per Cent. per Annum, Compound Intereft?

Here is given $A=385,68 \mathrm{II} ; R=1,06$; and $t=7$; to find $P$, by Theorem 2. Thus $\left.R^{t}=1,50363\right) 385,68 \mathrm{II}=A(256,5=P$. That is, $P=256 l$. Ios. which is the Principal or Sum, as was required.

> 2ueftion

Quefion 3. In what Time will 2561. ro s. raife a Stock of (or amount to) 3851.13 s. $7^{\frac{1}{2}} \mathrm{~d}$. allowing 6 per Cent. per Annum, Compound Intereft?

Here is given $P=256,5 ; A=385,6811 ; R=1,06 ;$ to find $t$ by the third Theorem $R^{t}=\frac{A}{P}=\frac{385,6811}{256,5}=1,50363$, which being continually divided by $R=1,06$ until nothing remain, the Number of thofe Divifions will be $7=t$. Thus 1,06 ) 1,50363 ( $1,4185^{2}$. And $\mathbf{x}, 06$ ) $1,41852(1,338225$. Again 1,06 ) 1,338225 ( 1,262477 . And fo on until it become 1,06 ) 1,06 ( 1 , which will be at the feventh Divifion. Therefore it will be $t=7$ the Number of Years required by the Queftion.

2uefion 4. If 2561 . ros. will amount to (or raife a Stock of) 3851.13 s. $7 \frac{1}{2} \mathrm{~d}$. in feven Years Time; what muft the Rate of Intereft be, per Cent. per Annum?

Here is given $P=256,5 ; A=385,681 \mathrm{I}$, and $t=7$, Quære R. By Theorem 3. $\frac{A}{P}=R^{t}=1,50363$; as before in the laft Queftion. And if $R^{t}=R^{7}=1,50363$, then $R={ }^{7} \sqrt{ } 1,50363$, which may be thus extracted.

$$
\begin{array}{r|l|l}
\text { Put } & \begin{array}{l}
r+e=R, \text { then } \\
1 \text { @ } \\
2
\end{array} & \begin{array}{r}
r^{7}+7 r^{6} e+2 r^{5} e e=R^{7}=1,50363=G \\
2-r^{7}
\end{array} \\
3 & 7 r^{6} e+21 r^{5} e e G-r^{7} \\
3 \div 7 r^{5} & 4 & r e+3 e e=\frac{G-r^{7}}{7 r^{5}}=D \\
4 \div & 5 & e=\frac{D}{r+3 e} ; \text { let } r=1 \text {, then } D=0,0719
\end{array}
$$

Operation $r=1,00$

$$
\begin{aligned}
&+3^{e}=\frac{0,18}{1,18)} \quad 0,0719\left(\begin{array}{l}
1,00
\end{array}=r\right. \\
& 0,06=e \\
& \text { Divifor } \frac{708}{11,06}=r+e=R
\end{aligned}
$$

Then $1: 0,06:: 100: 6$ the Rate per Cent. required.

The firft three Queftions may be much more eafily performed by the following Table, which is only the Amounts of one Pound for thirty-nine Years.

That

That is, of $R \cdot R R \cdot R R R \cdot R^{4} \cdot R^{5}$. and fo on to $R^{39}$.

| $\begin{aligned} & \text { K } \\ & 0 \\ & 0 \\ & 11 \\ & 0 \end{aligned}$ | The Amounts of 1 $l$. at 6 perCent. sc. Compaund Intereft. | $\begin{aligned} & \text { 厄 } \\ & \text { © } \\ & 11 \end{aligned}$ | The Amounts of 1I. at 6 perCent. \&ic. Compound Intereft. | 4 | The Amounts of I\%. at 6 perCent. \&c. Compound Intereft. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | = | 14 |  | 27 |  |
| 2 | 1.1236 $=R R$ | 15 | 2.39655819 | 28 | 5.1116866971 |
| 3 | $1.191016=R^{3}$ |  |  | 29 | 5.4183878990 |
| 4 |  | 16 |  | 30 | $5 \cdot 7434911729$ |
| 5 | 1. 338225 | 17 |  |  |  |
|  |  | 18 | 2.8543391529 | 32 | 6.4533866818 |
|  |  | 19 | 3.0255995021 3.2071354722 | 32 33 | $6.4533866818$ |
| 8 | 1.5938480745 |  |  | 34 | 7.2510252757 |
| 9 | 1.6894789590 | 21 | $3 \cdot 3995636$ | 35 | 7.6860867923 |
| 10 | 1.7908476965 | 22 | 3.6035374166 |  |  |
|  |  | 23 | 3.8197496616 | 36 | 8.1472519998 |
| 11 | 1.898298 | 24 | 4.0489346413 | 37 | 8.6360871198 |
| 12 | 2.0121964718 | 25 | 4.2918707197 | 38 | 9.1542523470 |
| 13 | 2.1329282601 | 26 | 4.5493829629 | 39 | 9.703507 |

The Title of this Table fhews it's Conftruction, and it's Ufe will eafily appear by an Example or two.

## $E X A M P L E 1$.

What will 3751.10 s . amount to in nine Years, at 6 per Cent. per Annum, \&rc.?

The tabular Number againf 9 Years is 1,689479 which being multiplied with the Principal 375,5 will produce 634,39938 8c. viz. $634 \% .8$ s. fere, being the Amount or Anfwer required.

$$
E X A M P L E
$$

What Principal (or Sum) muft be put to Intereft to raije a Stock of 634 l .8 s . in nine Yeirs Time, at 6 per Cont. per Annum, $\mathcal{O}^{\circ} \mathrm{C}$.

If the propofed Stock (viz. 634:4) is divided by the tabular Number that is againft the given Number of Years (viz. 9.) the Quotient will be the Principal (or Sum) required. Viz. againft 9 is $\mathbf{1}, 683479$. Then $\mathbf{I}, 689479) 634,4(375,5=3751.10 \mathrm{~s}$. the Principal (or Sum) required.

$$
E X A M P L E 3
$$

In what Time will 375 1. Ios. raije a Stock of (or amount to) 6341.8 s. at 6 per Cent. Eoc?

Divide the propofed Stock (viz. 634,4 ) uy (ue given Principal (viz. 375,5 ) and the Quotient will thew the tabular Number that ftands over againft the Time fought. Thus

$$
375,5) 634,4(1,689479 \text { छ } c .
$$

This Number being fought in the Talle, will be found to ftand againf 9 Years, which is the Time required.

But if the Quotient cannot be truly found in the Table of Amounts for Years, as above; then take out of that Table the neareft Number that is lefs, and make it a Divifor, by which you mult divide the firft Quotient; and then feek the fecond Quotient in the Table of Amounts for Days (which is inferted a little further on) and it will affign the Number of Days; as in this Example.

In what Time will 5631 . amount to 8601 , at 6 per Cent. per Annum, Compound Intereft?

## Anfwer. In 7 Years and 99 Days.

Thus $5^{6}$ ) $860(1,52753$ which fhews the Time to be more (or above) feven Years; for over againft 7 Years is 1,50363 which being made the new Divifor: Viz.

$$
1,50363) \mathrm{r}, 52753(\mathrm{I}, 01589 \text { ع०\%. }
$$

This Number is the neareft Amount to $99^{\circ}$ Days.
Note, If the Stock, Principal, and Time be given; the Rate of Intereft will be beft found by extraciing the Root, \&xc. as before in the fourth Quefion.

The next Thing that I fhall here propofe, is to make this Table (which is only calculated for the Rate of 6 per Cent.) univerfally ufeful for all the Rates of Compound Interett, which I may prefume to fay, is a new Improvement of my own, being well fatisfied it never was publified betore; and not only fo, but I have heard feveral very good Artifs affirm it was impoffible to be done.

The Method of performing it is briefly thus, Let $x=$ the Difference between $1,06=R$, the Amount of 1 l. for one Year (in the Table), and any other propofed Amount of $1 l$. for one Year ; which admits of two Cafes.

Cafe I. If the propofed Rate be greater than the $1,06=R$, then will $R+x=$ the true Amount of $I l$. for one Year at that Rate.

Cafe 2. But if the propofed Rate be lefs than $\mathbf{x}, 06=R$, then it will be $R-x=$ the Amount of $i l$. \& c .
Make $\left\{\begin{array}{l}t-1=b, t-2=c, t-3=d, t-4=f, \& c \text { 。 }\end{array}\right.$ $\frac{\frac{r}{2} t b=g, \frac{\pi}{4} c g=m, \frac{1}{4} d m=n, \frac{1}{4} f n=s, \& c c \text { 。 } . ~ . ~ . ~}{d}$

Then will $R^{t}+t R^{b} x+g R^{c} x^{2}+m R^{d} x^{4} \& c .=$ the Amount of $I l$. at the given Rate, for any Time denoted by $t$, in Cafe I. And $R^{t}-t R^{b} x+g R^{c} x^{2}-m R^{d} x^{3} \& c$. = the Amount of ill. in Cafe 2.

Which is no more but this: Let $R+x$ or $R-x$ (which foever it is) be involved (as directed in Secz. 5. Cbap. 2.) to the fame Power or Height as the Index $t$ the given Time in the Queftion denotes: rejecting all the Powers of $x$ ahove $x x x$ or $\& x x x$ at moft, as ufelefs. Then multiply that Power of $R+x$ or $R-x$ into the given Principal, and their Product will be the Amount required.

An Example or two in each Cafe will sender all eafy.

$$
E X A M P L E
$$

Suppofe it were required to find what 2561. would amount to in fifteen Years, at 81 . per Cent. per Annum Compound Intereft? Here $t=15$.

Firft $100: 108:: 1: 1,08$ the Amount of $1 l$. at 8 per Cent. Next $1,08-1,06=0,02=x$. And $R+x=1,08$ as in Cafe I . Then $R^{15}+{ }_{15} R^{14} x+105 R^{13} x x+455 R^{12} x x x \& \% c .=$ the Amount of $1 l$. for 15 Years, at 8 per Cent.

Here $x=0,02 \cdot x x=0,0004$. and $x x x=, 000008$ By the Table $R^{15}=2,39655^{8}$

Then $3,171736 \times 256=811,964416=A$.
That is, 811 l. 9 s. $3^{\frac{1}{2}}$ d. ferè. Which is the Anfwer required.

$$
E X A M P L E
$$

What will 365 l. amount to in feven Years at four and a balf per Cent. Esc.

Firft $100: 104,5:: 1: 1,045$ the Amount of $1 l$. at $4 \frac{1}{2} l$. per Cent.

Next $1,06-1,045=0,015=x$. Confequently $R-x=1,045$ as in Cafe 2.

Then $R^{j}-7 R^{\delta} x+2{ }_{1} R^{5} x x-35 R^{4} x \times x \& \mathrm{c} .=$ the Amount of $1 l$. for 7 Years, at $4 \frac{1}{2}$ per Cent.

Here $x=, 015 ; x x=, 000225$; and $x x x=000003375$

$$
\begin{array}{r}
\text { By the Table } R^{7}= \pm \mathbf{1 , 5 0 3 6 3 0} \\
\text { And }\left\{\begin{array}{r}
7 R^{6} x=0,148944 \\
+21 R^{5} x x= \pm 0,06323 \\
-35 R^{4} x x x=-0,00014 \mathrm{I}
\end{array}\right. \\
R^{7}-7 R^{5} x+21 R^{5} x x-35 R^{4} x x x=1,360868
\end{array}
$$

Then $1,360868 \times 3^{65}=496,71682=A$.
That is, 496 l . 14 s. $3^{\frac{1}{7}} \mathrm{~d}$. is the Aniwer required.
If the Reafon of thefe two Operations be but well underfood, it will be very ealy to conceive how to find $P$, the Principal, by having $A, t$, and $x$ given (becaufe $R$ and it's Powers are always given by the Table).
For $\overline{K^{t} \pm t R^{b} x+g K^{c} x x \pm m K^{d} x x x} \times P=A$ (as above). Therefore $\frac{A}{R^{t} \pm t R^{b} x+g R^{c} x x \pm m R^{d} x \times x}=P$
Or if $A_{3} P$, and $t$, be given, $x$ may be found.
For $R^{i} \pm t R^{b} x+g R^{c} \times x \pm m R^{d} \times x x=\frac{A}{P}$. This Equation heing folved (as in Chap. 10.) the Value of $x$ will be found; and then either $R+x$, or $R-x$ will hew the Rate of Intereft, Egc.

But I hall leave the numerical Operations to the Learner's Practice, fuppofing enough done to fhew how all Queftions of this Kind that are limited by whole Years may be computed.

And if the Time given or fought be not terminated by whole Years, but by Weeks, Months, Quarters, or Half-Years, छ$c^{\circ}$. for refolving fuch Queftions, the beft Way will be to reduce thofe Parts of a Year into Days ; that done, find an Anfwer accordigg to the Demand of the Queftion (and agreeing to Il. as before) for thiat Number of Days; and in order to that, it will be requifite to find the Amount of $1 /$. for one Day (as in my Compendium of Algebra, Page IIO) which I hall here infert.
Put $a=$ the Amount fought, then it will be

$$
\mathbf{I}: a:: a: a a:: a a: a a a:: a a a: a a a a \div \text { to } a^{355} .
$$

That is $\left\{\begin{array}{l}\text { As one Pound is to it's Amount fer one Day }:: \int_{0} \text { is that } \\ \text { Amount : to the Amount of two Days:: and fo is that } \\ \text { of two Days }: \text { to that of three Days. And fo on in } \div \\ \text { to } 365 \text { Days. }\end{array}\right.$
$L \downarrow 2$
Then

Then the laft of the Terms will be $a^{365}=1,06$

> | Put | $r+e=a$. And let $r=\mathbf{r}$ |  |
| :---: | :--- | :--- |
| $\mathbf{1 Q}^{305}$ |  | $r^{365}+365 r^{364} e+66430 r^{363} e e=a^{359}=1,06$ |

2 in Numb. $31+365 e+66430 e e=1,06$
$5 \div 6 \left\lvert\, e=\frac{D}{, 00549+e}\right.$
Operation ,00549
$+e=, 000 \mathbf{1}$
Ift Divifor, 00559$) \quad 0,0000009032\left(\begin{array}{l}1,0000000=r \\ 0,0001598\end{array}\right.$
$+e=, 00015 \quad 559 \quad 1,0001598=r+e=a$ 2d Divifor $\overline { , 0 0 5 7 4 } \longdiv { 3 4 4 2 }$ true to the 7 th Figure


Now $r=1,00016$ for a fecond Operation. Then

| 2 in Numb. | 7 | $1,06013401407+386,887 e+70402,172$ |
| :---: | :---: | :---: |
|  |  | lence it appears that $r-e=a$. |
| Therefore | 8 | $\begin{aligned} & 1,06013401407-386,887 e+70402,172 e, e \\ & =1,06 \end{aligned}$ |
| $8 \pm$ | 9 | $386,887 e-70402,172 e e=0,00013401407$ |
| $9 \div$ | 10 | ,0054953-ee=,0000000019035503 |
|  |  | ,0000000019035903 |
|  |  |  |

Operation ,0054953
$-e=3$
Ift Divifor ,0054950) $0,0000000019035503\left(\begin{array}{l}1,00016=r \\ 0,000000346417\end{array}\right.$


Which being further purfued to a third Operation will give $\varepsilon=1,0001596535^{8} 7453$ \& c.

This Value of $a$ is the Amount of 11 . for one Day, from which, if 1 l . be fubftracted, the Remainuer $=, 000159^{6} 53587$ \&c. will be the Intereit of $1 l$. for one Day. Confequently, if any propofed Principal be multiplied into either of there, the refpective Product will be the A mount or Intereit of that Principal for one Day, at 6 per Cent. Stc.

And that the Amount (or Intereft) of any Principal or Sum may be eafily computed for any Number of Days lefis than a Year; I have here inierted the following Table, which with a great deal of Care (and I believe Exactnels) is calculated from the Iait found ( $1,00015,653587453$ ) Amcunt of $x l$. for one Day. To which alfo is annexed a Table of the Amounts of Il. for Months.

| $$ | Amounts of $1 l$. \&c. | $\left\lvert\, \begin{gathered} \Xi \\ \underset{n}{\infty} \end{gathered}\right.$ | Amounts of 1 l. \&c. |  | Amounts of $1 l$. \&c. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0001596535 | 26 | 1.0041592979 | $5{ }^{1}$ | 1.0081-49166 |
| 2 | 1.0003193325 | 27 | 1.004319605 | 52 | 1.0083358753 |
| 3 | 1.0004790372 | 28 | 1.0044799487 | 53 | 10084968597 |
| 4 | 1.0006387673 | 29 | 1.0046403175 | 54 | 1.0036578699 |
| 5 | 1.0007985229 | 30 | 10048007120 | 55 | 1.0083189057 |
| 6 | 1.0009583039 | 31 | 1.0049611320 | 55 | 1.0089799673 |
| 7 | 1.0011181105 | 32 | $1.00512 .577 \% 6$ | 57 | 10.91410545 |
| 8 | 1.0012779426 | 33 | 1.0052820488 | 58 | 10093021675 |
| 9 | 1.0014378002 | 34 | 1 0054425457 | 59 | 1.0074633062 |
| 10 | 1.0015976834 | 35 | 1.0056030682 | 60 | 1.0096244707 |
| 11 | 1.0017575920 | 36 | 1.0057636164 | 61 | 1.00978,6608 |
| 12 | 1.0019175262 | 37 | 1.005924!001 | 62 | I. 0099468767 |
| 13 | 1.0020774859 | 38 | I. .0060847895 | 63 | 1.0101081184 |
| 14 | 1.0022374712 | 39 | 1.0062454146 | 64 | 1.0102693858 |
| 15 | 1. 0023974820 | 40 | 1.0064060653 | 65 | 1.0104306789 |
| 16 | 1.0025575184 | 41 | 1.0065667416 | 66 | 1.0105919978 |
| 17 | 1.0027175803 | 42 | 1.006-274436 | 67 | 1.0107533424 |
| 18 | 1.0028776677 | 43 | 1.0078881712 | 68 | 1.0109147128 |
| 19 | 1.0030377808 | 44 | 1. 0070489245 | 69 | 1.0110761090 |
| 20 | 1.0031979193 | 45 | 1.0072097035 | 70 | 1.01:2375309 |
| 21 | 1.0033580850 | 46 | 1.0073705082 | 71 | 1.0113989786 |
| 22 | $1.0035^{182732}$ | 47 | 1.0075313385 | 72 | 1.0115604521 |
| 23 | 1.0036784885 | 48 | 1. 0076921945 | 73 | 1.0117219513 |
| 24 | 1.0038387294 | 49 | 1.0078530762 | 74 | 1.0118834764 |
| 25 | 1.0039989958 | 50 | 1.0080139835 | 175 | 1.0120450272 |


|  | Amounts of $1 l$. $\& c$. | $\begin{aligned} & \forall \\ & \underset{\sim}{N} \\ & \hline \end{aligned}$ | Amounts of $1 l$. \&c. | $\begin{aligned} & \text { E } \\ & \text { 年 } \end{aligned}$ | Amounts of 1 l. \&c. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 76 | 1.0122066038 | 116 | 1.0186908655 | 156 | 1.0252166658 |
| 77 | 1.0123682062 | 117 | 1.0188535031 | 157 | 1.0253803453 |
| 78 | 1.0125398344 | 118 | 1.0190161667 | 158 | 1.0255440509 |
| 79 | 1.0126914885 | 119 | 1.0191788;63 | 159 | 1.0257077827 |
| 80 | 1.0128531683 | 120 | 10193415719 | 160 | 1.0258715406 |
| 81 | 1.0130148739 | 121 | 1.0195043134 | 161 | 1.0260353247 |
| 82 | 1.0131766054 | 122 | 1.0196670809 | 162 | 1.0261991349 |
| 83 | 1.0133383627 | 123 | 1.0198298745 | 163 | 1.0263629713 |
| 84 | 1.0135001458 | 124 | 1.0199926934 | 164 | 1.0265268338 |
| 85 | 1.0136619547 | 125 | 1.0201555389 | 165 | $\underline{1.0266907225}$ |
| 86 | 1.0138927895 | 26 | $\overline{1.0203184110}$ | 166 | 10268546374 |
| 87 | 1.0139856501 | 127 | 1.0204813084 | 167 | 1.0270185784 |
| 88 | 1.0141475365 | 128 | 1.0206442319 | 168 | 1.0271825456 |
| 89 | 1.0143094488 | 129 | 1.0208071814 | 169 | 1.0273465389 |
| 90 | 1.0144713869 | 130 | 1.0209701569 | 170 | 1.0275105585 |
| 91 | 1.0146333511 | 13 | 1.0211331585 | 171 | 1.0276746046 |
| 92 | 10147953408 | 132 | 1.0212961861 | 172 | 1.0278386764 |
| 93 | 1.C149573565 | 133 | 1.0214592397 | 173 | 1.0280027746 |
| 94 | 1.0151193981 | 134 | 1.0216223193 | 174 | 1.0281668989 |
| 95 | 10152814655 | 135 | $\underline{1.0217854250}$ | 175 | 1.0283310494 |
| 96 | 1015443559 | 136 | 1.0219485567 | 176 | 1.02849;2262 |
| 97 | 1.0156056781 | 137 | 1.0221117144 | 177 | 1.0286594291 |
| 9 | 1.0157578232 | 138 | 1.0222748982 | 178 | 1. 0288236583 |
| 99 | 1.0159299941 | 139 | 1.0224381081 | 179 | 1.0289879137 |
| 100 | 1.0160921910 | 140 | 10226013440 | 180 | 1.0291521953 |
| 101 | $\overline{1.0162544138}$ | 141 | $\overline{1.0227646060}$ | 181 | 1.0293160231 |
| 10 | 1.0164166624 | 142 | 1.c229278940 | 182 | 1.0294908372 |
| 103 | $1.01657^{89370}$ | 143 | 1.0230902081 | 183 | 1.0295451975 |
| 104 | 1.0167412375 | 144 | 1.0232545483 | 184 | 1.0298095841 |
| 105 | 1.0169035638 | 14\% | 1.0234179146 | $\underline{185}$ | 1.0299739969 |
| I'6 | 1.0170659161 | 146 | 1.0235813069 | 186 | 1.0301384359 |
| 107 | 1.0172282944 | 147 | 1.0237447253 | 187 | 1.0303029012 |
| 108 | 1.0173906985 | 148 | 1.0239081699 | 188 | 1.0304673928 |
| 109 | 1.0175513086 | 149 | 1.0240716405 | 189 | 1.0306319206 |
| 11 | 1.0177155846 | 150 | 1.0242351372 | 190 | 1.0307964557 |
| 111 | 1.0178780665 | 1;1 | 1.0243986600 | 191 | 1.0309610251 |
| 112 | 1.0180405744 | 152 | 1.0245622089 | 192 | 1.0311256216 |
| 113 | 1.0182031083 | 153 | 1.0247257830 | 193 | 1.0312902445 |
| 114 | 1.0183656680 | 154 | 1.0248893851 | 194 | 1.0314548937 |
| 115 | 1.0185282578 | 155 | 1.0250530124 | 195 | 1.0316195692 |

Chap. 12. Of Compount Jintereff. 263

|  | Amounts of $1 \%$. $\& c$. | $\begin{aligned} & \text { 붕 } \\ & \text { \| } \end{aligned}$ | Amounts of $1 l$. \&c. | 范 | Amounts of $1 l$. \&c. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 196 | 1.0317842709 | 236 | 1.0383939484 | 276 | 1.0450459680 |
| 197 | 1.0319489990 | 237 | 1.0385597318 | 277 | 1.0452128133 |
| 198 | 1.0321137534 | 238 | 1.0387255415 | 278 | 1.0453796853 |
| 199 | 1.0322785341 | 239 | 1.0388913778 | 279 | I. 0455446584 |
| 200 | 1.0324433410 | 240 | 1.0390572405 | 280 | 1.0457135092 |
| 201 | 1.0326081742 | 241 | 1.0392231298 | 1 | 10458804611 |
| 202 | 10327730339 | 242 | 1.0393890454 | 282 | 1.0460474397 |
| 203 | 1.0329379198 | 243 | 1.0395549876 | 283 | 1.0462144449 |
| 204 | 10331028321 | 244 | 1.0397209563 | 284 | 1.0463814768 |
| 20 | 1.0332677706 | 245 | 1.0398869515 | 285 | 1.0465484353 |
| 206 | 1.0334327355 | 246 | 1.0400529732 | 286 | 1.0467156206 |
| 207 | 1.0335977268 | 247 | 1.0402190214 | 287 | 1.0468827325 |
| 208 | 1.0337627444 | 248 | 1.0403850961 | 288 | 1.0470498711 |
| 2 | 1.0339277883 | 249 | 1.0405511973 | 289 | 1.0472170363 |
| 21 | 1.0340928586 | 250 | 1.0407173250 | 290 | $\underline{1.0473842283}$ |
| 211 | 1.034257955.2 | 251 | 1.0408834793 | 29 r | 1.0475514469 |
| 212 | 1.0344230782 | 252 | 1.0410496601 | 292 | 1.0477186923 |
| 2 | 1.0345882275 | 253 | 1.0412158674 | 293 | 1. 0478859643 |
| 214 | 1.0347534033 | 254 | 1.0413821012 | 294 | 1.0480532631 |
| 21 | 1.0349186054 | 255 | 1.0415483616 | 295 | 1.0482205885 |
| 216 | 1.0350838338 | 256 | 1.0417146485 | 296 | 1.0483879407 |
| 217 | 1.0352490887 | 257 | 1.0418809620 | 297 | 1. 0485553196 |
| 218 | 1.0354143699 | 258 | 1.0420473021 | 298 | 1.0487227252 |
| 219 | 1.0355796775 | 259 | 1.0422136687 | 299 | 1.0488901576 |
|  | 1.0357450115 | 260 | 1.0423800618 | 300 | 1.0490576166 |
| 221 | 1.0359103719 | 261 | 1.042546481 | 301 | 10492251025 |
| 222 | 1.0360757587 | 262 | 1.0427129278 | 302 | 1.0493926150 |
| 223 | 10362411719 | 263 | 1.0428794007 | 303 | 1.049560:543 |
| 224 | 1.0364066116 | 264 | 1.0430459001 | 30 | 1.0497277204 |
| 225 | 1.0365710776 | 265 | 1.0432124261 | 30 | 1.0498953132 |
| 226 | 1.0367375701 | 266 | 1.0433789787 | 306 | 1.0500629327 |
| 227 | 1.0369030889 | 267 | 1. 0435455579 | 30 | 1.0502305790 |
| 228 | 1. 0370686342 | 268 | 1.043721637 | 308 | 1.0503082521 |
| 229 | 1.0372342059 | 269 | 1.0438787961 | 30 | 1.0505659519 |
| 230 | 1.0373998041 | 270 | 1.0440454551 | 310 | 1.0507336786 |
| 231 | 1.0375654287 | 271 | 1.0442121407 | 311 | 1.0509014320 |
| 232 | $1.037731079{ }^{9}$ | 272 | 1.0443788529 | 312 | 1.0510692121 |
| 233 | 1.0378967573 | 273 | 1.0445455918 | $3 \cdot 3$ | 1.0512370191 |
| 234 | 1.0380624612 | 274 | 1.0447123572 | 314 | 1.0514048529 |
| 235 | 1.0382241916 | 275 | 1.0448791493 | 315 | 1.0515727134 |


| 年 | Amounts of $1 l$. \&c. | ¢ | Amounts of $1 l$. \&c. | ષiv | Amounts of $1 \%$. \&c. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 316 | 1.0517406008 | 339 | 1.0556094165 | 362 | 1.0594924636 |
| 317 | 1.0519085150 | 340 | 1.0557779484 | 363 | 1.0596616154 |
| 318 | 1.0520764559 |  |  | 364 | 1.0598307942 |
| 319 | 1.0522444237 | 341 | 1.0559465071 | 365 |  |
| 320 | 1.0524124183 | 342 | 1.0561150927 |  |  |
|  |  | 343 | 1.0562837053 |  |  |
| 321 | 1.0525804397 | 344 | 1.0564523448 |  |  |
| 322 | 1.0527484880 | 345 | 1.0566210112 |  |  |
| 323 | 1.0529165631 |  |  |  |  |
| 324 | 1.0530846650 | 346 | 1.0567897045 | $0$ | of $1 l$. at 6 |
| 325 | 1.0532527937 | 347 | 1.0569584248 | E |  |
|  |  | 348 | 1.0571271720 | S | For Months. |
| 326 | 1.0534209493 | 349 | 1.0572959394 |  |  |
| 327 | 1.0535891317 | 350 | 1.0574647472 | 1 | 1.0048675505 |
| 328 | 1.0537573410 |  |  | 2 | 1. 0097587042 |
| 329 | 10539255771 | 351 | 1.0576335753 | 3 | I O146738462 |
| 330 | 1.0540938401 | 352 | 1.0578024303 | 4 | 1.0196128224 |
|  |  | 353 | 1.0579713122 | 5 | 1.0245758394 |
| 331 | 1.0542621300 | 354 | $1.0581402211$ |  |  |
| 332 | 1.0544304467 | 355 | 1.0583091570 | 6 | 1.0295630141 |
| 333 | 1.0545987903 |  |  | 7 | 1.0345744641 |
| 334 | 1.0547671608 | 356 | 1.0584781199 | 8 | 1.0396103076 |
| 335 | $\underline{1.0549355582}$ | 357 | 1.0586471097 | 9 | 1.0446706634 |
|  |  | 358 | 1.0588161265 | 10 | 1.0497556507 |
| 336 | 1.0551039824 | 359 | 1.0589851703 |  |  |
| 337 | 1.0552724336 | 360 | 1.0591542411 | 11 | $1.0548653894$ |
| 338 | 1.0554409116 | 361 | 1.0593233389 | 12 | $1.06$ |

The ufe of this Table is in all refpects like that of whole Years, in finding the Amount of any given Sum for any propofed Number of Days lefs than a Year.

$$
E X A M P L E
$$

Suppoge it were required to find the Amount of 375 l. for 210 Days, at 6 per Cent.

The Amount of I l. for 210 Days is $\mathrm{I}, 0340928$ छ$\%$. per Table. Then $1,0340928 \times 375=387,7848$ छ'c. $=387 \mathrm{l}$. $15 \mathrm{~s} .8 \frac{1}{4} \mathrm{~d}$. which is the Amount required. And the reft of the Variations may be performed juit as in the Examples of whole Years.

But if the Time given confifts of Years, and Parts of a Year; as Quarters, Months, $E^{\circ} c$. Then reduce the odd Time or Parts of the Year into Days; and the Anfwer may then be found at two Operations; as in the following Example.

Chap. 12. Of $\mathbb{C o m p o u n d}$ Intcreft, \&c. 265
Example 2. Suppofe it were required to find what 265 l. would amount to in five Yiars and 135 Days at 6 per Cent. Joc.
Firft, the Amount of $I l$. for $\left\{\begin{array}{r}5 \text { Years is } 1,338225, \varepsilon^{\circ} c . \\ 135 \text { Days is } 1,021785, \text { E' }^{\circ} c \text {. }\end{array}\right.$
Then $1,338225 \times 1,021785 \times 265 \%=362,355232$, 6 \% being the Amount or Anfwer required.

Or, if the Amount and Time are given, to find the Principal: Then multiply the Amount of $1 l$. for the Years, and the Amount of 1. for the odd Days tngether: And by their Product divide the given Amount, the Quotient will be the Principal required.

Example 3. What Principal will raife a Siock of $362 l .7$ s. $1 \frac{1}{4} d$. Or 362,355232 l. in 5 Years and 135 Days, at 6 per Cent. Eึc.
The Amount of 1 for $\left\{\begin{array}{r}5 \text { Years is } 1,33^{8225}, \mathcal{E}^{\circ} c_{0} . \\ 135 \text { Days is } 1,021785, \text { E }^{\circ}{ }_{c} \text {. }\end{array}\right.$
Then $1,338225 \times 1,021785=1,367378$, \&c. the Divifor. Next 1,367378 ) $3^{62,35523^{2}}=A^{265}$ l. the Principal required.

Again, if the Principal and its Amount are given, to find the Time, at 6 per Cent. \&c. you muft divide the Amount by its Principal, and then proceed as in the Third Example, Page 256, for the Anfwer required.

But if the Amount and its Principal, with the Time of its being at Interef, are given, to find the Rate of Intereft: Then proceed as in the Fourth Quefion, Page 255, E'c.

Now in order to make this Table of Amounts for Davs ufeful for all Rates of Intereft (as before in that for Years) you muft firt find the Simple Intereft of $\mathrm{I} l$. for one Day, buth at the given Rate, and alfo at 6 per Cent. And call their Difference $x$.

Thus, fuppofe the given Ratio were 8 per Cent. per Annum, Firft $130: 8:: 1: 0,08$ And $100: 6:: 1: 0,06$ the Two Simple Interefts for one Year.

Then 365) 0, $8\left(0,00021917,8^{\circ} \mathrm{c}\right.$. the Simple Intereft of $1 \%$. for one Day, at 8 per Cent.

And 365) 0,06 (0,00016438, ש'r. the Simple Intereft of $1 \%$ for one Day, at 6 per Cent.

Their Difference $0,00005479=x$, which may do indifferently well for ordinary finall Queftions: But where Exactnefs is required, it will be convenient to make Ufe of this Proportion:

Mm
Viz。

Viz. $\left\{\begin{array}{l}\text { As the Simple Intereft of } \mathbf{I} l \text {. for one Day at } 6 \text { per Cent. } \\ \text { Is to the Tabular Intereft of } \mathbf{I} l \text {. for one Day : : So is the } \\ \text { Simple Intereft of } \mathbf{I} l \text {. for one Day, at any given Rate: } \\ \text { To a Fourth Number. }\end{array}\right.$
That is, 0,00016438:0,00015955::0,00021917: 0,00021286 Then $0,00021286-0,00015965=0,00005321=x$.

This $z$ being involved with the refpective Amounts for Days, in the fame Manner as was done with thofe for Years (vide Page 258) the Refult will be the Anfwer to the Quefion.

Sect. 2. Ammities or 32xntoms in Arrear, computed at Compound Intereft.

When Annuities, \&ic. are faid to be in Arrear, fee Page 248. And I fhall here make Ufe of the fame Letters to reprefent the fame Things as before in that Page, fave only that $R$ is here equal to the Amount of I $l$. as in Section I. of this Cbapter.

Suppofe $u=$ the Firft Year's Rent of any Annuity without Interef.
'Then will $R u+u=\left\{\begin{array}{l}\text { the Amount of the Firft } \text { Year's Rent, and }\end{array}\right.$ (its Interefts; More the 2d Year's Rent. the Amount of the Ift and 2 d Years
And $R R u+R u+u=\left\{\begin{array}{l}\text { the Amounts, wheir Interefts; More the } \\ \text { Rent } \\ 3 \text { Sear's Rent, \&uc. }\end{array}\right.$
Here $R R u+R u+u=A$, the Amount of any Yearly Rent or Annuity, being forborne Three Tears. And from hence may be deduced thefe Proportions :
Viz. $u: R u:: R u: R R u:: R P u: R R R u$, and fo on in $\because$ for any Number of Terms or Years denoted by $t$, wherein the laft Term will always be $u R^{\mathrm{t}} \mathrm{r}$.
Confequently, $A-u R^{t-1}=$ the Sum of all the Antecedents And $A-u=$ the Sum of all the Confe uents in the Series.
And therefore it would be $u: u R:: A-u R^{-1}: A-u$, Vide Page 188.
Ergo Au-uu=RuA-uus, which, being divided all by $u$, will become $A-u=R A-u R^{\prime}$.

From this laft Equation it will be eafy to raife the following Theorems:
Theorem 1. $\left\{\frac{u R^{t}-u}{k-i}=A . \quad\right.$ Thecrem 2. $\left\{\frac{R A-A}{R-i}=u_{0}\right.$

Chap. 12. Of Compow in shtemet, 8c. 267
Theorem 3. $\left\{\frac{R A+u-A}{u}=R^{t}\right.$. If this quation be continually divided by $R$, until nothing remain, the $\Lambda^{\top}$ umber of thofe $D_{i}$ vifions will be $t$. See Page 255
Theorem 4. $\left\{\frac{1}{u} R-R^{t}=\frac{A-u}{u}\right.$. If this 压quation be refolved into Numbers, according to the Method propofed in Sect. 3. Chap. 10. the Root will fhew the lalue of $R$.

Question 1. If 30 l. Vearly Rent, or Annuity \&uc. be forborne (i. e. remain unpaid) Nine Years; what will it amount to, at 6 per Cent. per Annum, Compound Intereft?

Here is given $u=30, t=9$, and $R=1,06$; to find $A$. per Theorem I.

$$
R^{9}=1,689479 \text { By the Table of Amounts for Yiars }
$$ $3^{\circ}=u$

$$
\begin{aligned}
R^{9} u & =50,684370 \\
-u & =3^{\circ},
\end{aligned}
$$

$R-1=0,06) 20,684370\left(34 \cdot 4,7395=344 l .14\right.$ s. $9 \frac{1}{2} d .=A_{3}$ the Amount required.

Question 2. What Yearly Rent or Annuity, \&ic. being forborne or unpaid Nine Years, will raife ä Stock of 344 l. 14 s. $9 \frac{1}{2} d .=$ 344,7395, at 6 per Cent. \&rc.

Here is given $A=344,7395, t=9$, and $R=1,06$; to find $u$. per Theorem 2.

$$
\begin{gathered}
A R=344,7395 \times 1,06=365,42387 \\
-A=\frac{344,7395}{20,68437}\left(30=u_{0}\right. \\
\left.R^{\mathrm{t}}-\mathrm{I}=\mathrm{r}, 689479-\mathrm{I}=0,689479\right)
\end{gathered}
$$

Question 3. In what Time will 301. Tcarly Rent raife Stock or Amount to 344 l. 14 s. $9 \frac{1}{2}$ d. allowving 6 per Cent. for the Forbearance of Payments?

Here is given $u=30, A=344,7395$, and $R=1,06$; to find $t$. per Theorem 3 .

Firft $A R+u-A=365,42397+30-344,7395=50,68437 \cdot$ And $u=30) 50,684: 37$ ( $\mathrm{I}, 689479=R^{t}$. Then $R=1,06) 1,689479(1,593848$. And 1,06$) 1,593848(1,50352$; and fo on until it become 1,06 ) 1,06 ( 1 . Which will be at the Ninth Divifion; therefore $t=9$.

Or $R=1,689479$, being fought in the Table of Amounts for Years, will be found to ftand over-againft 9 rears, which is the Iime required.

Question 4. If $30 \%$. per Annum, being unpaid Nine Tears, will amount to 344 l. 14 s. $9 \frac{1}{2}$ d. allowing Compound Intereft for every Payment as it becomes due, What muft the Rate of Intereft be per Cent. E'c.

Here is given $u=30, A=344,7395$, and $t=9$; to find $R$ by the laft of the Four Equations, Viz. $\left\{\frac{A}{u} R-R^{\prime}=\frac{A-u}{u}\right.$. Firft $\frac{A}{u}={ }^{3+4, \frac{7}{3} \frac{305}{80}}=11,491317$. And $\frac{A-u}{u}=10,49131 \%$. Hence there is this Equation; $11,491317 R-R^{9}=10,491317$.

$$
\begin{aligned}
& \text { Let }|\mathbf{I}| r+e=R \text {, and fuppofe } r=\mathbf{I} \\
& \text { 1 O } 92 r^{9}+9 r^{8} e+36 r^{7} e c=R^{9}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \text { in Numb. } 4 \text { 1,000000 }+9,000000 e+36 e e=R^{9} \\
& \text { W-4 } 5 \text { 10,491317+2,491317e-36ee }=10,491317 \\
& \text { Whence } 6 \text { 36ee }=2,491317 e \\
& \left.6 \div 3^{6 e}\right]_{7} l_{e}=0,06, \& c \text {. }
\end{aligned}
$$

$\left.\begin{array}{l}\text { Firft } r=1 \\ +e=0,06\end{array}\right\}=1,06=R\left\{\begin{array}{l}\text { As may be eafily try'd by invol- } \\ \text { ving it, and ordering it, as the } \\ \text { Equation above directs. }\end{array}\right.$
Section 3. To find the grefent evorth of Annuities, Penfions, or Leajes, \&c. at Compound Intereft.
Let $P=$ the prefent Worth of any Annuity, or Leafe, \&cc. and the reft of the Letters as before.

Then, from what has been faid in Section 3. Chap. 11. about Purchajing of Annuities, \&c. at Simple Intereft, it will be eafy to form the like Theorems here at Campound Intereff, viz. by Combining Theorem 1. Page 266. and Theorem 1. Page 254. into one Theorem.
For $\left\{\begin{array}{l}u R-u \\ R-\mathrm{I}\end{array}=A\left\{\begin{array}{l}\text { The Amount of any Yearly Rent being unpaid } \\ \text { any Number of Years. Per Theorem 1. of } \\ \text { the laft Section. Page } 266 .\end{array}\right.\right.$ And $P R^{t}=A\left\{\begin{array}{l}\text { The Amount of any Principal or Sum being put to } \\ \text { Intereft, for the fame Number of Years. Per The- } \\ \text { orem 1. Page 254. }\end{array}\right.$

Hence it follows, That $P R^{\prime}=\frac{u R^{\prime}-u}{R-1}$,
Viz. $P R^{t+1}-P R^{t}=u R^{t}-u$ being the very fame $\mathbb{E} q u a t i o n$ with that in my Compendium of Algebra, Page II 2. which is there raifed from the Confideration of purchafing Annuities, or taking of Leafes, \&c. to be grounded upon a Rank or Series of Geometrical Proportionals continually decreafing. Thus $\frac{u}{R}$ is the Firft and Greatef Term; $R$ the common Ratio of all the Terms; and $P$ is the Sum of all the Series.
That is, $\frac{u}{R}: \frac{u}{R R}:: \frac{u}{R R}: \frac{u}{R R R}:: \frac{u}{R R R}: \frac{u}{R^{4}}:: \frac{u}{R^{4}}: \frac{u}{R_{s}^{2}}$, \&cc. in $\because$ until the laft Term $=\frac{u}{R^{t}}$. Then will $P-\frac{u}{R^{t}}$ be the Sum of all the Antecedents, and $P-\frac{u}{R}$ the Sum of all the Confequents. Therefore it will be
$\frac{u}{R}: \frac{u}{R R^{*}}$. Or (in the fame Ratio) $u: \frac{u}{R}:: P-\frac{u}{R^{t}}: P-\frac{u}{R}$, which produces $P R^{i+1}-u R^{t}=P R^{t}-u$. As above.
From this IEquation may be deduced the following Theorems:
Theorem I. $\left\{\begin{array}{l}u-\frac{u}{R^{t}} \\ R-1\end{array}=P\right.$. Theorem 2. $\left\{\frac{P R^{t} \times R:-P R^{c}}{R-1}=u_{0}\right.$ Theorem $3 \cdot\left\{\frac{u}{P+u-P R}=R^{\prime}\left\{\begin{array}{l}\text { Which, being continually divided } \\ \text { by } \mathrm{R}, \text { will give t. }\end{array}\right.\right.$
Theorem 4. $\left\{\frac{u}{P}=\frac{u}{P} R^{t}+R^{t}-R^{t}+{ }^{\text {r }}\right.$. The Refolving of which IEquation will difcover the Value of $R$.

Queffion I. What is 30 l. Mearly Rent, to continue Seven Years, worth in ready Money, allowing 6 per Cent. Compound Intereft to the Purchajer?

Here is given $u=30 \cdot t=7$. And $R=\mathrm{r}, 66$ to find $P$. per Theorem I. Viz. $\frac{u}{R^{t}}$. $=\frac{30}{1,30303}=19,9517$.
And $30-19,9517=10,483=u-\frac{u}{R!}$,

Then $R-1=0,06$ ) $10,0483(167,4716=P=167 \mathrm{l} . \mathrm{gs} \cdot 5 d$. being the Anfwer required.

Queftion 2. What Annuity or Meariy Rent, to continue Severs Years, may be purcbajed for 167 l. 9 s. 5 d. allowing 6 per Cent. Compound Intereft to the Purchafer?

In this Quefion there is given $P=167,4716 . t=7$ And $R=1,06$ to find $u$. By the Second Theorem.
Firft $P R^{\mathrm{t}} \times R=251,8153 \times 1,06=266,9242$ And $\left.-P R^{t}=167,4716 \times 1,50363\right)=251,8153$

$$
\text { Then } \left.R^{t}-\mathrm{r}=0,50363\right) \quad 15,1089 \quad(30=12
$$

That is $u=30 l$. the Anfwer required.
Queftion 3. How long may one have a Leafe of 30 l. Vearly Rent, for 167 l. $9^{\text {s. }} 5^{\text {d. allowing }} 6$ per Cent. Compound Intereft to the Purchafer?

Here is given $P=167,4716 \cdot u=30$. And $R=1,06$ to find $t$. By the Third Theorem.

Firft $P+u=167,4716+30=197,4716$
And $-P R=177,5199$
Then 19,9517)30 $=u\left(1,50363=R^{t}\right.$
If this $1,50363=R^{t}$ be either continually divided by $1,06=R$ until nothing remain (As before in Page 255.) Or if it be fought in the Table of Amounts for Years, \&\&c. it will difover $t=7$ which is the true Anfwer required.

Queftion 4. Suppofe one fbould give 167 l. 9 s. 5 d. for the Purebafe of a Penfion, or Annuity of $30 l$. per Annum, to continue Seven Vears: At what Rate of Intereft, per Cent. would that Purchafe be made, allowing Compound Intereft to the Purchafer?

In this Quefion there is given, $P=167,4716 . u=30$ and $t=7$ to find $R$. Per Theorem 4 in this Equation $\left\{\frac{u}{P} \doteq \frac{u}{P}\right.$ $R^{\mathrm{t}}+R^{\mathrm{t}}-R^{\mathrm{t}+1}$, which being brought into Numbers, and its Root extracted, as in the fourth Queftion of the laft Section; the Value of $R$ will be found 1,06 , and then it will be $1: 0,06:: 100: 6$, the Rate per Cent, as was required.

Chap. 12. Of Compound Tutereft, \&cc.
Thefe Four Queftions include all the Varieties that can be propofed about purchafing Annuities or Leafes, \&c. which are to be either immediately enter'd upon, or in Poffeffion at the Time when the Purchafe is made.

But fuch Queftions as relate to Annuities, or a taking of Leafes, \&c. in Reverfion, muft be parted or divided into two diftinct Queftions, each to be feparately confider'd by itfelf (See Page 252.) As in the following Examples:

Example 1. Suppofe it were required to compute the prefent Worth of 75 l. Vearly Rent, which is not to commence or be enter'd upon, until Ten Years bence; and then to continue Seven Years after that Time: at 6 per Cent. $E_{c}{ }_{c}$. Compound Intereff ?

The Firft Work in this Quefion is, to find what 75 l. per Annum, to continue Seven Years, is worth in ready Money; as if it were to be. immediately enter'd upon : And to perform that, there is given $u=75 . R=1,06$. and $t=7$. to find $P$. as in the Firft 2uefion of this Section.
Thus, $\frac{u}{R^{2}}=\frac{7 c}{1,50303}=49,8793$ And $75-49,8793=25,1207$
$=u-\frac{u}{R}$.
Then, $R-1=0,06) 25,1207=418,6783=418 l .14$ s. $6 \frac{3}{4} d$. the Anfwer to the Firft Part of the Queftion.

Then the next Work will be, to find what Principal or Sume being put out Ten Years, at 6 per Cent. 8cc. will amount to 4181. 14s. ${ }^{3}$ d. Here is given $A=418,6783, R=1,06, t=10$. to find P. Per Theorem 2. Page 254.

Thus $\left.R^{\mathrm{ro}}=1,790847\right) 4 \mathrm{I} 8,6783=A(233,7884=233 l$. 15 s.9d. the prefent Worth of $75 \%$ per Annum in Revergion, \&c. As was required.

Example 2. What Annuity or Yearly Rent, to be eriter'd upon Ten Years bence, and then to continue Seven Years, may be purchafed for 233 l. 15 s. 9 d. Ready Money, at 6 per Cent. Ev'c. Compound Intereft?

In the 1 ft Work of this Quefion there is given, $P=233,7884$ $R=1,06$. And $t=10$ (the Time which the Annuity is not to be enter'd upon) to find $A$. Per Theorem 1. Page 254.

Thus, $P R^{t}=233,7884 \times 1,790847=418,6783=A$ the て Atnount

Amount of 233 l . 15 s .9 d . put to Interef Ten Years, at 6 per Cent. \&c. Then, for the Second Work of the 2uefion, there is given $P=418,6783 . R=1,06$. And $t=7$ (the Time that the Annuity is to be enjoy'd) to find $\alpha$. Per Theorem 2. of this Section.

$$
\begin{array}{r}
\text { Thus } P R^{t} \times R=418,6783 \times 1,50363 \times 1,06=667,3095 \\
-P R^{t}=418,6783 \times 1,50363=629,5372 \\
\left.R^{t}-1=0,50363\right) 37,7723(75=u
\end{array}
$$

That is, $u=75^{l}$. the Yearly Rent required by the $2 u e f t i o n$.
There Two Examples of finding $P$ and $u$ do fully fhew the $M e-$ thod that muft be ufed in Refolving the two General, and indeed, the moft ufeful Quefions about Annuities or Leafes in Reverfion: And if there be Occafion, either the Rate, or the Time, viz. $R$ or $t$, may be found by a due Application of their refpective Theorems.

Note, That which bath been done in the two laft Sections about Annuities or Yearly Rents, \&c. at 6 per Cent. may alfo be done for any Rate of Interef, by applying the Difference of the Rates (viz. x.) As directed in the Firft Section of this Chapter.

Now becaufe that Rents and Annuities, \&c. are ufually paid either by Quarterly or Half Yearly Payments, and the Method of computing them by the Pen may be thought a little troublefome; I have inferted the following Tables of the Amounts of $1 l$. for each, at 6 per Cent.

| $11=\frac{\text { 岂 }}{\substack{2}}$ | Annuities of 1/. at 6 per Cent. Compound Intereft. |  | Annuities of 1 1 . at 6 per Cent. Compound Intereft. |  | Annuities of 11. at 6 per Cent. Compound Intereft. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1,0295630141 | 11 | 1,3777875592 | 21 | 1,8437905523 |
| 2 | 1,06 | 12 | 1,4185191122 | 22 | 1,8982985583 |
| 3 | 1,0613367949 | 13 | 1,4604548127 | 23 | 1,9544179853 |
| 4 | 1,1236 | 14 | 1,5036302590 | 24 | 2,0121964718 |
| 5 | 1,1568170026 | 15 | 1,5480821017 | 25 | 2,0716830644 |
| 6 | 1,191016 | 16 | 1,5938480745 | 26 | 2,1329282601 |
| 7 | 1,2a62260228 | 17 | 1,6409670276 | 27 | 2,1959840483 |
| 8 | 1,26247696 | 18 | 1,6894789589 | 28 | 2,2609039557 |
| 9 | 1,2997995842 | 19 | 1,7394250493 | 29 | 2,3277430912 |
| 10 | 1,3382255776 | 20 | 1,7908476965 | 30 | 2,3965581001 |

Chap. 12. Of Compouno $\frac{\text { Tntereft, \&c. } 273}{}$
Quarterly Amounts.

|  | Amounts of 1 l. at 6 per Cent. \&c. Compound Intereft. |  | Amounts of $\mathrm{I} l$. at 6 per Cent. \&c. Compound Intereft. |  | Amounts of Il. at 6 per Cent. \&c. Compound Interent. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1,014 6738461 | 21 | 1,3578024938 | 41 | 1,8171263199 |
| 2 | 1,0295630141 | 22 | 1,3777875592 | 42 | 1, ${ }^{1}, 437905523$ |
| 3 | 1,0446706634 | 23 | 1,3980050019 | 43 | 1,8708460509 |
| 4 | 1,06 | 24 | 1,4185191122 | 44 | 1,8982985583 |
| 5 | 1,0755542769 | 25 | 1,4393342435 | 45 | 1,9261538989 |
| 6 | 1,0913367949 | 26 | 1,4604548127 | 46 | 1,9544179853 |
| 7 | 1,1073509032 | 27 | 1,4818853020 | 47 | 1,9530958140 |
| 8 | I, 1236 | 28 | 1,5036302590 | 48 | 2,0121964718 |
| 9 | 1,1400875335 | 29 | 1,5256942978 | 49 | 2,0417231330 |
| 10 | 1,1568170026 | 30 | 1,5480821017 | 50 | 2,0716830644 |
| 11 | 1,1737919574 | 31 | 1,5707984203 | 51 | 2,1020826228 |
| 12 | 1,191016 | 32 | 1,5938480745 | 52 | 2,1329282601 |
| 13 | 1,2084927856 | 33 | 1,6172359557 | 53 | 2,164226;211 |
| 14 | 1,2262260228 | 34 | 1,64096702761 | 54 | 2,19:9840483 |
| 15 | 1,2442194748 | 35 | 1,6650463253 | 55 | 2,2282075801 |
| 16 | 1,26247696 | 36 | 1,6894789589 | 56 | 2,2609039557 |
| 17 | 1,2810023527 | 37 | 1,7142701133 | 57 | 2,2940801123 |
| 18 | 1,2997995842 | 38 | 1,7394250493 | 58 | 2,3277430912 |
| 19 | 1,3188726433 | 39 | 1,7649491048 | 59 | 2,3619000349 |
| 20 | 1,3382255776 | 40 | 1,7908476965 | 60 | 2,3965581931 |

Either of thefe Tables may alfo be made ufeful for any propofed Rate of Intereft; by making the $\frac{1}{2}$ or $\frac{1}{4}$ of the Difference of the Rate $=x$, \& cc.

As for Inftance, fuppofe any of the aforefaid Quefions about Annuities or Rents, \&ic. were to be computed at 8 per Cient. per Amn.

Then 1,08-1,06 $=0,02=x$ for Tearly Payments; as before.
Confequently 2) $0,02(0,01=x$ for Half Year's Payments.
Or 4) 0,02 ( $0,005=x$ for 2 uarierly Payments.
Now thefe Values of $x$, although they are not really true, yet they may ferve indifferently well for fmall Rents; as I have already faid, Page 265. But if you would work exactly;
Then $\sqrt{ } 1,08=1,0392304845$, \&ic.
$-\sqrt{1,06}=1,0295680141$, Vide Table, Page 272.
Difference $=0,0096624704=x$ for Half Yearly Pajments:

And $\sqrt{ }: \sqrt{ } 1,08=1,0194263092$, \&c.
$-\sqrt[V]{ }: \sqrt{1,06=1,0146738461 \text {. See the Laft Table. }}$
Their Difference $0,0047524631=x$, for Quarterly Payments.
Thefe are the true Values of $x$, which being involeed with their refpective Amounts (as before for Years, \&c.) according as the Quefion requires, the Refult will be the Anfwer at 8 per Cent. \&c. The like may be done for any other Rate, either Greater or Lefs than 6.

Now, although the Method ufed here (and in Page 257 and $258, \& c$.) be really true (by which the Tables calculated only for 6 per Cent. are made effectual for all Rates of Compound Intereft) yet it was rather propos'd to fhew what may poffibly be performed by the Pen, without a great many Tables of feveral Rates, than intended for common Practice.

For it muft needs be confefs'd, that Tables, calculated on Purpofe for any defigned Rate of Interef, are much more ready and ufeful in common Practice. And therefore fince the Legiflative Power hath thought fit to reduce the Rate of Intereff, and hath fettled it by an Act of Parliament, at 5 per Cent. l've therefore been at the Trouble (which was not a little) to calculate the following Tables for that Rate; but don't think it convenient to take the Tables at 6 per Gent. out of the Book, becaufe the Examples are all fuited to them; and not only fo, but they may be found ufeful in the taking of Leafes for Houfes, $\mathcal{E}^{c}$. For in thofe Cafes, the Purchafer is allowed more Intereft for his purchafe Money, than the common Rate paid upon the Loan of Money.

Chap. 12. Of ©ompound 3ntereft, \&c.
Here follow New Tables of the Amounts of one Pound at the Rate of 5 per Cent. per Annum Compound Intereft. For Years, Half Years, 2uarters, Months, and Days.

| $\begin{array}{ll} 11 \\ \hdashline=\frac{2}{6} \\ \hline \end{array}$ | The <br> Amounts of 1 1 . \& c . | 11 ${ }_{0}$ | The Amounts of 1 l . \&c. | 11 | The Amounts of 1 l. \&c. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1,05=R$ | 14 |  | 27 | 3,73345632 |
|  | $1,1025=R R$ |  | 2,07892818 | 28 | 3,92012914 |
|  | $1,157625=R^{3}$ |  | 2,18287459 | 29 | 4,11613599 |
|  | $\begin{aligned} & 1,21550625 \\ & 1,27628156 \end{aligned}$ | 17 | 2,18287459 2,29201832 | 30 | 4,32194239 |
|  |  | 7 | 2,29201132 2,40661923 | 31 | 4,53803949 |
| 6 | 1,34009564 | 19 | 2,52695019 | 32 | 4,76494147 |
| 7 | 1,40710042 |  | 2,65329770 | 33 | 5,00318854 |
| 8 | 1,47745544 1,55132822 |  | 2,78596259 | 34 <br> 35 | 5,25334797 $5,5160 r^{\prime} 56$ |
| 10 | 1,62889463 | 22 | 2,78596259 2,92526072 | 35 | 5,51001536 |
|  |  | 23 | 3,07152375 | 36 | 5,79181613 |
| 11 | 1,71033936 | 24 | 3,22509994 | 37 | 6,08140694 |
| 12 | 1,79585633 | 25 | 3,38635494 | 38 | 6,38547729 |
| 13 | 1,88564914 | 26 | 3,55567269 | 39 | 6,70475115 |


III. The Teble of the Quarterly Amounts of $1 \mathbf{l}$. \&cc.

|  | The Amounts of 1. \&rc. | $11{\underset{\sim}{2}}_{\sim}^{\sim}$ | The Amounts of 1 l. \&c. | If | The Amounts of 1. \&c. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1,01227223 | 21 | 1,29194439 | 41 | 1,64888480 |
| 2 | 1,22,69507 | 22 | 1,30779943 | 42 | 1,66912031 |
| 3 | 1,23:27037 | 23 | 1,32384905 | 43 | 1,68950414 |
| 4 | 1,05 | 24 | 1,34009564 | 44 | 1,71033936 |
| 5 | 1,06288585 | 25 | 1,3;654161 | 45 | 1,73132904 |
| 6 | 1,07592983 | 26 | 1,37318940 | 46 | 1,75257632 |
|  | 1,08913389 | 27 | 1,39004151 | 47 | 1,77408435 |
| 8 | $1,1025$ | 28 | 1,40710042 | 48 | 1,7958;633 |
| 9 | 1,11003014 | 29 | 1,42436869 | 49 | 1,81789549 |
| 10 | 1,12972632 | 30 | 1,44184887 | 50 | 1,84020513 |
| 11 | 1,14359059 | 31 | 1,45954358 | 51 | 1,86278856 |
| 12 | 1,157525 | 32 | 1,47745544 | 52 | 1,88564914 |
| 13 | 1,17183164 | 33 | 1,49558712 | 53 | 1,90879027 |
| 14 | 1,18621264 | 34 | 1,51394132 | 54 | 1,93221539 |
| 15 | 1,20077012 | 35 | 1,53252076 | 55 | 1,95592799 |
| 16 | 1,215506:5 | 36 | 1,55132822 | 56 | 1,97993160 |
|  | 1,23042323 | 37 | 1,57036648 | 57 | 2,00422978 |
| 18. | 1,24552327 | 38 | 1,58,963838 | 58 | 2,02882616 |
| 19 | 1,26080862 | 39 | 1,60914680 | 59 | 2,05372439 |
| 20 | 1,27628156 | 40 | 1,62889763 | 60 | 2,07892818 |


| IV. The Table of the Montily Amounts of 11.8 c . |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $113$ | The A miounts of 1 l. \&c. |  | The Amounts of I $1 . \& c$. | I1 旁 | The Amounts of 1 1 . \&c. |
|  |  |  | 1,020537 | 9 | 1,03727037 |
| 2 | 1,00816,85 | 6 | 1,02469507 | 10 | 1,0+149634 |
| 3 | 1,01227223 | 7 | 1,02886981 | 11 | 1,04573953 |
|  | 1,016390́3 |  | 1,03306155 | 12 | 1,05 |

NOTE: The Amount of one Pound, for one Day, is 1,0001336807225, Eq. (found as that in Page 260) but in the following Table, I take only Nine of thofe Figures, as being fufficient in Practice, for computing the Intereft of any Sum not exGeding Olie Hundred Miltions of Pounds.
V. The

Chap. 12. Of Compound Jintereft, \&cc. 277
V. The Table of the Daily Amounts of I l. \& \&c,

|  | The <br> Amounts of 1. \&c. | - | The Amounts of 1 1 . \&c. |  | The Amounts of 1 1.8 c . |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1,00013368 | 36 | 1,00482376 | 71 | 1,00953587 |
| 2 | 1,00026738 | 37 | 1,00495810 | 72 | 1,00967082 |
| 3 | 1,00040109 | 38 | 1,00509245 | 73 | 1,00980579 |
| 4 | 1,00053483 | 39 | 1,00522681 | 74 | 1,00994079 |
| 5 | 1,00066858 | 40 | 1,00536119 | 75 | 1,01007579 |
| 6 | 1,00080235 | 41 | 1,00549558 | 76 | 1,01021083 |
| 7 | 1,00093614 | 42 | 1,00563000 | 77 | 1,01034587 |
| 8 | 1,00106994 | 43 | 1,00576443 | 78 | 1,01048093 |
| 9 | 1,00120377 | 44 | 1,00589888 | 79 | 1,01061602 |
| 10 | 1,00133761 | 45 | 1,00603335 | 80 | 1,01075112 |
| 11 | 1,00147147 | 46 | 1,00616784 | 81 | 1,01088623 |
| 12 | 1,00160535 | 47 | 1,00630234 | 82 | 1,01102137 |
| I3 | 1,00173924 | 48 | 1,00643687 | 83 | 1,01115652 |
| 14 | 1,00187315 | 49 | 1,00657141 | 84 | 1,01129169 |
| 15 | 1,00200708 | 50 | 1,00670597 | 85 | 1,01142688 |
| 16 | 1,00214103 | 51 | 1,00684055 | 86 | 1,01156209 |
| 17 | 1,00227500 | 52 | 1,00697514 | 87 | 1,01169732 |
| 18 | 1,00240899 | 53 | 1,00710975 | 88 | 1,01183256 |
| 19 | 1,00254299 | 54 | 1,00724438 | 89 | 1,01196783 |
| 20 | 1,00267701 | 55 | 1,00737903 | 90 | 1,01210311 |
| 21 | 1,00281105 | 56 | 1,00751370 | 91 | 1,21223841 |
| 22 | 1,00294510 | 57 | 1,00764839 | 92 | 1,01237372 |
| 23 | 1,00307918 | 58 | 1,00778309 | 93 | 1,01250906 |
| 24 | 1,00321327 | 59 | 1,00791781 | 94 | 1,01264441 |
| 25 | 1,00334738 | 60 | 1,00805255 | 95 | 1,01277978 |
| 25 | 1,00348151 | 61 | 1,00818731 | 96 | 1,01291517 |
| 27 | 1,00361565 | 62 | 1,00832208 | 97 | 1,01305058 |
| 28 | 1,00374982 | 63 | 1,00845687 | 98 | 1,01318600 |
| 29 | 1,00388400 | 64 | 1,00859168 | 99 | 1,01332145 |
| 30 | 1,00401820 | 65 | 1,00872651 | 100 | 1,01345691 |
| 31 | 1,00415242 | 66 | 1,00886136 | 101 | 1,01359239 |
| 32 | 1,00428665 | 67 | 1,00899623 | 10 | 1,01372788 |
| 33 | 1,00442091 | 68 | 1,00913111 | 103 | 1,01386340 |
| 34 | 1,00455518 | 69 | 1,00926601 | 104 | 1,01399893 |
| 35 | 1,00468947 | 70 | 1,00940093 | 105 | 1,01413448 |


| $\begin{array}{r} \text { O } \\ -\underset{\text { N }}{\substack{\infty}} \\ \text { II } \\ \hline \end{array}$ | The Amounts of I 1. \&c. | $\begin{aligned} & \underset{\infty}{0} \\ & \times \underbrace{0}_{\text {II }} \\ & \hline \end{aligned}$ | The Amounts of 1 1. \&c. | $\begin{array}{r} \forall \\ \cdots \\ \text { N } \\ \text { II } \\ \hline \end{array}$ | The Amounts of 1 1.8 cc . |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 106 | 1,01427005 | 146 | 1,01970775 | 186 | 1,02517459 |
| 107 | 1,01440,64 | 147 | 1,01984406 | 187 | 1,02531164 |
| 108 | 1,01454125 | 148 | 1,01998039 | 188 | 1,02544870 |
| 109 | 1,01467687 | 1.49 | 1,02011675 | 189 | 1,02558578 |
| 110 | 1,01481252 | 150 | 1,02025312 | 190 | 1,02572288 |
| 11 | 1,01494818 | 151 | 1,02038950 | 191 | 1,02586000 |
| 112 | 1,01508386 | 152 | 1,02052591 | 192 | 1,02599714 |
| 113 | 1,01521955 | 153 | 1,02066234 | 193 | 1,02613430 |
| 114 | 1,01535527 | 154 | 1,02079878 | 194 | 1,02627147 |
| 115 | 1,01549100 | 155 | 1,02093524 | 195 | 1,02640866 |
| 116 | 1,01562675 | 156 | 1,02107172 | 196 | 1,026;4588 |
| 117 | 1,01576́252 | 157 | 1,02120822 | 197 | 1,02668310 |
| 118 | 1,21589831 | $15^{8}$ | 1,02 134473 | 198 | 1,02682015 |
| 119 | 1,01603412 | 159 | 1,02148127 | 199 | 1,02695762 |
| 120 | 1,01616994 | 160 | 1,02161782 | 200 | 1,02709490 |
| 121 | 1,01630578 | 161 | 1,02175439 | 201 | 1,02723221 |
| 12 | 1,01644164 | 162 | 1,02189098 | 202 | 1,02736953 |
| 123 | 1,01657752 | 163 | 1,02202758 | 203 | 1,02750686 |
| 124 | 1,01671349 | 164 | 1,02216421 | 204 | 1,02764422 |
| 125 | 1,01684933 | 165 | 1,02230085 | 205 | 1,02778160 |
| 126 | 1,01698527 | 166 | 1,02243751 | 206 | 1,02791899 |
| 127 | 1,01712122 | 167 | 1,02257419 | 207 | 1,02805640 |
| 128 | 1,01725719 | 168 | 1,02271089 | 208 | 1,02819384 |
| 129 | 1,01739317 | 169 | 1,02284761 | 209 | 1,02833129 |
| 130 | 1,01752918 | 170 | 1,02298434 | 210 | 1,02846875 |
| 131 | 1,01766521 | 171 | 1,02312100 | 211 | 1,02860624 |
| 132 | 1,01780125 | 172 | 1,02325787 | 212 | 1,02874375 |
| 133 | 1,01793731 | 173 | 1,02339466 | 213 | 1,02888127 |
| 134 | 1,01807338 | 174 | 1,02353147 | 214 | 1,02901881 |
| 135 | 1,01820948 | 175 | 1,02366829 | 215 | 1,02915637 |
| 136 | 1,01834559 | 176 | 1,02380514 | 216 | 1,02929395 |
| 137 | 1,01848173 | 177 | 1,02394200 | 217 | 1,02943154 |
| $13^{8}$ | 1,0:861788 | 178 | 1,02407888 | 218 | 1,02956916 |
| 139 | 1,01875405 | 179 | 1,02421578 | 219 | 1,02970679 |
| 140 | 1,01889024 | 180 | 1,02435270 | 220 | 1,02984445 |
| 141 | 1,01902644 | 181 | 1,02448954 | 221 | 1,02998212 |
| 142 | 1,01916267 | 182 | 1,02462659 | 222 | 1,03011980 |
| 143 | 1,01929891 | 183 | 1,02476356 | 223 | 1,0302575 1 |
| 144 | 1,01943517 | 184 | 1,02490055 | 224 | 1,03039524 |
| 145 | 1,01957145 | 185 | 1,02503756 | 225 | 1,03053298 |

Chap. 12. Of $\mathbb{C o m p o u n d} 3$ nterett, \&c.

|  | The <br> Amounts of 1 l. \&c. |  | The <br> Amounts of 1 l. \&c. | $\cdots \frac{\infty}{50}$ | The <br> Amounts of 1l. \&c. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 226 | 1,03067074 | 266 | 1,03619636 | 306 | 1,04175160 |
| 227 | 1,03080852 | 267 | 1,03633488 | 307 | 1,04189086 |
| 228 | 1,03094632 | 268 | 1,03647342 | 308 | 1,04203015 |
| 229 | 1,03108414 | 269 | 1,03661197 | 309 | 1,04216944 |
| 230 | 1,03122197 | 270 | 1,03675055 | 310 | 1,04230876 |
| 231 | 1,03135983 | 271 | I,03688914 | 311 | $1,042.44810$ |
| 232 | 1,03149770 | 272 | 1,03702775 | 312 | 1,04258245 |
| 233 | 1,03163559 | 273 | 1,03716638 | 313 | 1,04272683 |
| 234 | 1,03177350 | 274 | 1,03730503 | 314 | 1,04286622 |
| 235 | 1,03191143 | 275 | 1,03744370 | 315 | 1,04300563 |
| 236 | 1,03204938 | 276 | I,03758239 | 316 | 1,04314506 |
| 237 | 1,03218734 | 277 | 1,03772109 | 317 | 1,04328451 |
| 238 | 1,03232533 | 278 | I,03785982 | 318 | 1,04342397 |
| 239 | 1,03246333 | 279 | 1,03799856 | 319 | 1,04356346 |
| 240 | 1,03260135 | 280 | 1,03813732 | 320 | 1,04370297 |
| 241 | I,03273939 | 281 | 1,03827609 | 321 | 1,04384249 |
| 242 | 1,03287744 | 282 | 1,03841489 | 322 | 1,04398203 |
| 243 | $1,0330155^{2}$ | 283 | 1,03855371 | 323 | 1,04412159 |
| 244 | 1,03315361 | 284 | 1,03869254 | 324 | 1,04426117 |
| 245 | 1,03329173 | 285 | 1,03883139 | 325 | 1,04440077 |
| 246 | 1,03342986 | 286 | 1,03897027 | 326 | 1,04454038 |
| 247 | 1,03356801 | 287 | 1,03910916 | 327 | 1,04468002 |
| 248 | 1,03370617 | 288 | 1,03924817 | 328 | 1,04481967 |
| 249 | 1,03384436 | 289 | 1,03938699 | 329 | 1,04495934 |
| 250 | 1,03398157 | 290 | 1,03952594 | 330 | 1,04509903 |
| 251 | 1,03412079 | 291 | 1,03966491 | 331 | 1,24523874 |
| 252 | 1,03425903 | 292 | 1,03980389 | 332 | 1,04537847 |
| 253 | 1,03439729 | 293 | 1,03994289 | 333 | 1,04551822 |
| 254 | 1,03453557 | 294 | 1,04008191 | 334 | 1,04565798 |
| 255 | 1,03467387 | 295 | 1,04022095 | 335 | 1,04579777 |
| 256 | 1,03481218 | 296 | 1,04036001 | 336 | 1,04593757 |
| 257 | 1,03495052 | 297 | 1,04049908 | 337 | 1,04607739 |
| 258 | 1,03508887 | $29^{8}$ | 1,04063818 | 338 | 1,04621723 |
| 259 | 1,03522724 | 299 | 1,04077729 | 339 | 1,04635709 |
| 260 | 1,03536563 | 300 | 1,04091642 | 340 | 1,04649697 |
| 261 | $1,03550404$ | 301 | 1,04105557 | $34^{1}$ | 1,04663686 |
| 262 | 1,03564247 | 302 | 1,04119474 | 342 | 1,04677678 |
| 263 | 1,03578091 | 303 | 1,04133393 | 343 | 1,04691671 |
| 264 | 1,03591938 | 304 | 1,04147314 | 344 | 1,04705667 |
| 265 | 1,03605786 | 305 | 1,04161236 | 345 | 1,04719664 |


| 280 |  | algebra. |  |  | Part II. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \% | The <br> Amounts of $1 \%$. \&c. | $\cdots$ | The Amounts of $1 \%$. \&c. | - | The Amounts of 1. \& 8 c. |
| 346 | 1,04733663 | 353 | 1,04831708 | 360 | 1,04929845 |
| 347 | 1,04747664 | 354 | 1,04845722 | ${ }_{3} 61$ | 1,04943 ${ }^{8} 72$ |
| 348 | 1,04761666 | 355 | 1,04859738 | 362 | 1,04957901 |
| 349 | 1,04775671 | 356 | 1,04873756 | 363 | 1,04971932 |
| 350 | 1,04789677 | 357 | 1,04887775 | 364 | 1,04985965 |
| 351 | 1,04803686 | 358 | 1,04901797 | 365 | 1,04999999 |
| $35^{2}$ | 1,04817696 | 359 | 1,04915820 | 366 | 1,05 |

I think it is needlefs to fas any Thing of the Ufe of there Tables, becaufe I take it for granted, that whoever underftands the Work of the foregoing Examples, at 6 per Cent. cannot but know how to make Ure of thefe Tables at 5 per Cent. as Occafion requires.

Thus far concerning Annuities, or Leafes, \&c. that are limited by any affigned Time; and 'tis only fuch that can be computed by Theorems or certain Rules. However, it may not perhaps be unacceptable, to infert a brief Account of fome Eftimates that have been reafonably made, by two very ingenious Perfons, about the Proportion or Difference of Mens Lives, according to their feveral Ages; which may be of good Ufe in computing the Values of Annuities, or taking of Leafes for Lives, \&c.

Sir William Petty, in his Difcourfe made before the Royal Society (Anno 1674) concerning the Ufe of Duplicate Proportion, in the Life of Man and its Duration, faith, that it's found by Experience there are more Perfons living of between 16 and 26 Years Old, than of any other Age or Decade of Years in the whole Life of Man (viz. 70 or 80 Vears.) His Reafon for that Affertion I fiall omit; but fuppofing it true, he thence infers, that the Roots of every Number of Mens Ages under 16 (whofe Root is 4) compared with the faid Number 4, doth thew the Proportion of the Likelihood of fuch Mens reaching the Age of 70 Years.

As for Example, 'tis 4 Times more likely, that one of 16 Years Old fhould live to 70 , than a New-born Babe: 'Tis 3 Times more likely, that one of 9 Years Old fhould attain the Age of 70 , than the faid $\operatorname{lnf}$ ant, \& ci.

On the other Hand, 'tis 5 to 4 , that one of 25 Year's Old will die before one of 16: And 6 to 5, that one of 36 will die before one of 25 . And fo on according to the Roots of any other declining Age, compared with the $(4,6)$ the Root of 21, which is the Year of Perfection according to the Senfe of our Law, and the Age for whofe Life a Leafe is moft valuable.

Chap. 12. Of Compouind 5 ntereft, $\& \mathrm{cc}$ 28I
2. The ingenious and grear Mathematician, Dector Edmund Hallcy (in Pbilofoph. Tranfaef. Numb. 196) doth, with great Induftry and Skill, draw an Efitimate of the Proportion of Mens Lives, from the Monthly Tables of the Births and Funerals in Breflaw, the Capital City of the Province of Silefsa; or, as the Germans call it, Schlefia. Whence he proves that it's 80 to 1 , a Perfon of 25 - Years Old will not die in a Year: That it is $5 \frac{1}{2}$ to 1 , that a Man of 40 will live 7 Years: That a Man of 30 Years Old may reafonably expect to live 27 or 28 Years, \&ic.

Now from thefe and the like Proportions (he juftly infers) that the Price of Infurance upon Lives ought to be regulated, there being a great Difference between the Life of a Man of 20, and one of 50 . For Example: 'Tis 100 to 1 , that a Man of 20 dies not in a Year, and but 38 to I, for a Man of 50 Years of Age. And upon thefe alfo depends the Valuation of Annuities for Lives; for it is plain, that the Purchafer ought to pay only fuch a Part of the Value of any Annuity, as he hath Chances that he is living.

And for that Purpofe he hath taken the Pains (which was not a little) to compute the following Table (that fhews the Value of Annuities) for every Fifth Year of $A g e$ to the 70 th.

| Age | Year's Purchafe | Rge | Year's Purchafe | Age | Year's Purchafe. |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{1 0 , 2 8}$ | 25 | 12,27 | 50 | 9,21 |
| 5 | 13,40 | 30 | 11,72 | 55 | 8,51 |
| 10 | 13,44 | 35 | 11,12 | 60 | 7,60 |
| 15 | $\mathbf{1 3} 33$ | 40 | 10,57 | 65 | 6,54 |
| 20 | 12,78 | 45 | 9,91 | 70 | 5,32 |

The fame ingenious Gentleman proceeds on, and thews how to efimate or find the Valus of Two Lives, and then of Three Lives, which being too long a Difcourfe to be recited here, I have, for Brevity's Sake, omitted it; and thall only add this ferious Obfervation,

Viz. How unjufly we repine at the Shortnefs of our Lives, and think ourfelves wrong'd if we attain not to Cld Age; whereas it appears, that the One Half of thofe, that are Born, die in Seventeen Years Time. For by the aforefaid Bills of Mortality at Breflaw, it was found, that $123^{8}$ were in that Time reduced to 616 . So that, inftead of murmuring at what we call a Short Life, we ought to account it as a great Bleffing that we have furviv'd, perhaps by many Years, that $P_{e}$ riod of Life whereat the one Half of the whole Race of Mankind does not arsive.

Scat. 4. Of Purchafing Iflueshold, or ateal ©ftates; at Compound Intereft.
All Free-bold or Real Efates, are fuppofed to be purchafed or bought to continue for ever (viz. witbout any limited Time); therefore the Bufinefs of computing the true Value of fuch Eflates is grounded upon a Rank or Series of Geometrical Proportions continually decreafing, ad Infinitun:

Thus, let $P, u, R$, denote the fame Data as in the laft Section. Then the Series will be, $\frac{u}{R}, \frac{u}{R R}, \frac{u}{R 3}, \frac{u}{R+}, \frac{u}{R ;}$, and fo on in $\div$ until the laft Term $=0$. Then will $P-0$ (viz. $P)$ be the fum of all the Antecedents. And $P-\frac{u}{R}$ will be the Sum of all the Confequents; therefore it will be $u: \frac{u}{R}:: P: P-\frac{u}{R}$ which produces $P R-u=P$.

This Equation affords the following Theorems.
Theorem 1. $P R-P=u$. Theorem 2. $\quad\left\{\frac{u}{R-1}=P\right.$.

$$
\text { Theorem 3. }\left\{\frac{P+u}{P}=R\right. \text {. }
$$

Example. Suppofe a Free-bold Efate of 75 l. Yearly Rent were to be fold; what is it worth, allowing the Buyer 6 per Cent. छ'c. Compound Interef for his Money?

In this 2uefion there is given $u=75 \cdot R=1,06$ to find $P$. Per Theorem 2. Thus $R-1=0,006$ ) $75=u(1250 \%=P$. the Anfwer required. And fo on for any of the reft, as Occafion requires. But if the Rent is to be paid, either by 2uarterly or Half Yearly Payments ;
$\left.\begin{array}{l}\text { Then } R=\sqrt{1,06} \text { for Half Yearly } \\ \text { And } \quad R=V: V \mathrm{t}, 06 \text { for Quarterly }\end{array}\right\}$ Payments at 6 per Cent.

The like is to be underfood for any other propofed Rate of $I n$. tereft, either greater or lefs than 6 per Cent.
The Application of thefe Theorems to Praxice is fo v(ryy eafy, that in's needlefs to infert more Examples.

## A N <br> INTRODUCTION T,O THE <br> Mathematicks.

P A R T III.

## C H A P. I,

## Of ©eometrical Defintionts, \&c.

## Sect. 1. Of Lines and Angles.

APoint bath no Parts: That is, a Geometrieal Point is not any 2uantity, but only an affignable Place in any Quantity, denoted by a Point: As at $A$. and $B$.
Such a Place may be conceived fo infinitely fmall, as to be void of Length, Breadth, and Thicknefs; and therefore a Point may be faid to have no Parts.
2. A Line is called a Quantity of one Dimenfion, becaufe it may have any fuppofed Length, but no Breadth nor Thicickneff, being made or reprefented to the Eye, by the Motion of a Point.
That is, if the Point at $A$, be moved (upon the fame Plane) to the Point at $B$, it will defcribe a Line either right or circular (viz. crooked) according to its Motion.
Therefore the Ends or Limits of a Line are Points.
3. A Right Line, is that Line which lieth even or Araight betwixt thofe Points that limit its Length, being the Bortef Line that can be drawn between any $I_{\text {wo }}$ Points. As the Line $A B$.


Therefore, between any two Points, there can lie or be drawn but one right Line.

OOz
4. A Circular, crooked or Oblique Line, is that which lies bending between thofe Points which limit its Length, as the Lines $C D$ or $F G$, \&c.

Of the ee Kinds of Lines there are various Sorts; but thofe of the Circle,
 Parabola, Ellipfis, and Hyperbola are of mof general UJe in Geometry; of which a particular Account Jhall be given further on.
5. Paraliel Lines, are thofe that lie equally diftant from one another in all their Parts, viz. fuch Lines as being infinitely extended (upon the lame Plane) will never meet: As the Lines $A B$ and $a b$ : or $C D$ and $c d$.

6. Lines not Parallel, but inclining (wiz. leaning) one towards another, whether they are Right Lines, or Circular Lines, will (if they are extended) meet and make an Aingle; the Point where they meet is callied the Angular Point, as at $A$. And according as fuch Lines ftand, nearer or further off each other, the Angle is faid to be leffer or greater, whether the Lines that include the Angle be long or Bort. That is, the Lines $A d$ and $A f$ include the fame Angle as $A B$ and $A C$ doth; notwithtanding that $A B$ is longer than $A c$, \&c.
7. All Angles including between Right Lines are called Rightlin'd Angles: and thofe included between Circular Lines are called Spherical Angles. But all Angles, whether Right-lin'd or Sphericals fall under one of thefe Three Denominations.

$$
V i z_{0}\left\{\begin{array}{l}
\text { A kight angle. } \\
\text { An Diture angle. } \\
\text { An arute angle. }
\end{array}\right.
$$

8. A RIGht-Angle is that which is included betwixt Two Lines, that meet one another Perpendicularly.

Chap. I.
That is, when a Right Line, as DC, meets with another RightLine, as $A B$, fo directly as that it neither inclines nor declines to one Side more than the other, but make the Angles on both Sides of it equal, as at $x, x$; then are thore Angles called Right-Angles; and the Lines fo meeting are faid
 to be Perpendicular to each other.

That is, $A C$, and $C B$, are Perpendicular to $D C$, as well as $D, C$ is to eitber or both of them.
9. An Obtuse Angle is that which is greater than a Right Angle. Such is the Angle included between the Lires $A C$ and $C B$.
10. An Acute Angle is
 that which is lefs than a Right Angle: As the Angle included between the Lines C B and C D.

There Two Angles are generally called $\mathrm{Obli}^{\text {eue Angles. }}$

## Sect. 2. Of a Circle, \&xc.

Before a Circle and its Parts are defined, it will be convenient to give a brief Account of Superficies in general.

1. A Superficies or Surface is the Upper, or very Out- jude of any vifible Thing. But by Superficies in Geometry, is meant only fo much of the Out-fiae of any Thing as is inclofed within a Line or Lines, according to the Form or Figure of the Thing defigned; and it is produced or formed by the Motion of a Line, as a Line is defcribed by the Motion of a Point; thus:

Suppole the Line $A B$ were equally moved (upon the fame Plane) to $C D$; then will the Points at $A$ and $B$ defcribe the two Lines $A C$
 and $B D$; and by fo doing they will form (and inclofe) the SUPERFictes or Figure $A B C D$, being a Quantity of Two Dimenfions, viz. it hath Length and Breadth, but not Thicknefs. Confequently the Bounds or Limits of a Superficies are Lines.

Note, The Superficies of any Figure, is ufually called its Area:
2. A Circle is a plain regular Figure, whofe Area is bounded or limited by one continued Line, called the Circumference or Periphery of the Circle, which may be thus defcribed or drawn.

Suppofe a Right Line, as C B, to have one of its Extreain Points, as $C$, fo fix'd upon any Plane, as that the other Point at $B$ may move about it; then if the Point at $B$ be moved round about (upon the fame Plane) it will defcribe a Line equally diftant in all its Parts from the Point $C$, which will be the Circumference or Periphery of that Circle; the Point $C$ will be its Center, and the con-
 tained Space will be its Area, and the Right Line C B, by which the Circle is thus defcribed, is called RADIUS.

## Confectary.

From bence 'tis evident, that an infinite Number of Right Lines may be drawn from the Center of any Circle to touch its Periphery, swhich will be all equal to one another, becaufe they are all Radius's. And with a little Confideration it will be eafy to conceive, that no. more than two equal Right Lines can be drawn from any Point within a Circle to toucch its Peripbery, but from the Center only. (9. c. 3.)
3. Equal Circles are thofe which have equal Radius's; for it's plain by the laft Definition, that one and the fame Radius (as $C B$ ) mult needs defcribe equal Circles, how many foever they are.
4. The Diameter of a Circle, is twice its Radius joined into one Right Line; as $A B$ drawn through the Center $C$, and ending at the Periphery on each side.

That is the Diameter divides the Gircle into Iwo equal Parts.

5. A Semicircle (viz. Half a Circle) is a Figure included between the Diameter, and Half the Feriphery cut off by the Diameter; as $A D B$.

Chap. I. Of 2.87
6. A Quadrant is Half a Semicircle, viz. one Quarter of a Circle; and 'tis made by the Radius (as DC) fanding Perpendicular upon the Diameter at the Center $C$, cutting the Periphery of the Semicircle in the Middle, as at $D$. Therefore a 2 nadrant, or balf the Semicircle, is the Meajure of a Right Angle.
7. A Chord Line, or the Subtenfe
 of an Arch, is any Right Line that cuts the Circle into Two unequal Parts, as the Line $S G$; and is always lefs than the Diameter.
8. A Segment of a Circle, is a Figure included betwixt the Cbord and that Arch of the Periphery which is cut off by the Chord: And it may either be greater or lefs than a Semicircle; as the Figure $S D G$, or $S M G$.
9. A Sector is a Figure included between Two Radius's of the Circle, and that Arch of its Periphery where they touch, as the Figure $A C B$ : And the $\operatorname{Arch} A B$ is the Meafure of the Angle at $C$, included betwixt the Radius's $A C$ and $B C$.

Note, All Angles of Sectors are called Angles at the Center of a Circle.

10. An Angle in the Segment of a Circle is that which is included between Two Chords that flow from one and the fame Point in the Periphery, as at $D$, and meet with the Ends of another Chord Line, as at $F$ and $G$.

That is, the Angles at $D$, at $F$ and at $G$, are called Angles at the Periphery, or Angles fanding on the Segment of a Circle.

> Sect. 3. Of Triangles.

There are two Kinds of Triangles, viz. Plain and Spherical; but I Ball not give any Definition of the Spherical, becaufe they more immediately relate to Aftronomy.

1. A Plain Triangle is a Figure whofe Area is contained within the Limits of Three Right Lines called Sides, including Three Angles: And it may be divided, and takes its Name, either according to its Sides or Angles.

## I. By its Sides.

2. An Equilateral Triangleis that which hath all its Three Sides equal; as the Figure $A B C$.
That is, $A B=B C=A C$.

3. An Isosceles Triangle, is that which hath only Two of its Sides equal, as the Figure $B D G$ : That is, $B D=D G$; but the Third Side $B G$ may be either greater or lefs, as Occafion requires.

4. A Scalene Triangle, is that which hath all its Three Sides unequal;
fuch as the Figure HKM.

5. By its Angles.
6. A Right-angled Triangle, is that which hath one Right Angle; that is, when Two of its Sides are Perpendicular to each other, as $C A$ is fuppofed to be to $B A$. Therefore the Angle at A, is a Right Angle, per Defin. 8. Sect. 1 .


Note, The langef Side of every Right-angled Triangle (as $B C$ ) is called the Hypothenufe, and the longeft of the other $\tau$ wo Sides which include the Right Angle (as BA) is called the Bafe: The Third Side (as $C A$ ) is called the Cathetus or Perpendiicular.
6. An Obtuse-Angled Triangle, is that which hath one of its Angles Obtufe, and it's called an Amblygonium Triangle. Such is the Third Triangle $H K M$.
7. An Acute-Angied Triangle, is that which hath all its Angles Acute, and it's called an Oxygonium Triangle; fuch are the Firft and Second Triangles $A B C$ and $B D G$.

Note, All Triangles that bave not a Right Angle, whether they are Acute, or Obtufe, are, in general Terms, called Oblique Trian-

Chap. 1.
Of 讯efintions, \&c.
gles, witbout any other DifinEtion, as before. And the longeft Side of every oblique Triangle is ufually called the Bafe; the other two are only called Sides or Legs.
8. The Altitude or Height of any Plain Triangle, is the Length of a Right Line let fall perpendicular from any of its Angles, upon the Side oppofite to that Angle from whence it falls; and may be either within, or without the Triangle, as Occafion requires, being denoted by the Two prick'd Lines, in the annexed Triangles.


## Sect. 4. Of Fout five jfigures.

1. A SQuare is a plain regular Figure, whofe Area is limited by Four equal Sides all perpendicular one to another.

That is, when $A B=B C=C D=D A$, and the Angles $A, B, C, D$ are all equal, then it's ufually called a Geometrical Square.

2. A Rhombus; or Diamond-like Figure, is that which hath Four equal Sides, but no Right-angle. That is, a Rhombus is a Square mov'd out of its right Pofition, as the annexed Figure.

3. A Rectangle, or a Rigbt-angled Parallelogram (often called an Oblong, or long Square) is a Figure that hath four Right-angles and its two oppofite Sides equal, viz. $B C=H D=$ and $B H=C D$.

4. A Rhomboides, is an Oblique-angled Parallelogram; that is, it is a Parallelogram moved out of its right Pofition, like the annexed Figure.

5. The Altitude or Height of any Oblique-angled Paralieiogram, viz. either of the Rhombus or Rhomboides, is a Rigbt-line let fall perpendicular from any Angle upon the Side oppofite to that Angle; and may either be within or without the Figure: As the prick'd Lines
 in the annexed Figure.
6. Every Four-fided Figure, diffesent from thofe before-mentioned, is called a Trapezium.

That is, when it has neither oppofite Sides, nor oppofite Angles equal; as the Figure A BCD.

7. A Rigbt-line, drawn from any Angle in a Four-fided Figure to its oppofite Angle, is called a Diagonal Line, and will divide the Area of the Figure into two Triangles, being denoted by the prick'd Line AC in the laft Figure.
8. All Right-lin'd Figures, that have more than four Sides, are call'd Polygons, whether they be regular or irreguler.
9. ARegular Polygon is that which hath all its Sides equal, ftanding at equal Angles, and is named according to the Number of its Sides (or Angles). That is, if it have five equal Sides, it is called a Pentagon; if fix equal Sides, it is call'd a Hexagon; if feven, 'tis a Heptagon; if eight, 'tis an Octagon, \&c.

Note, All Regular Pc'vgons may be infcrib'd in a Circle; that is, their Angular Points, bow many foever they bave, will all juß touch the Circle's Periphery.
10. AnIrregular Polygon is that Figure which hath many unequal Sides ftanding at anequal Angles (like unto the annexed Figure, or otherwife) ; and of fuch Kind of Polygons there are infinite Varieties, but they may all be reduced to regular Figures by drawing Diagonal Lines in them; as fhall be fhew'd
 farther on.

Thefe are the moft general and ufeful Definitions that concern plain or fuperficial Geometry.

As for thofe which relate to Solids, I thought it convenient to omit giving any Account of them in this Place, becaufe they would rather puzzle and amule the Learner, than improve him, until he has gain'd a competent Rnowledge in the moft ufeful Theorems concerning Superficies; for then thofe Definitions may be more eafily underftood, and will help him to form a clearer Idea of their refpective Solids, than 'tis poffible to conceive of them before; and therefore I have referv'd thofe Definitions until we come to the Fifth Part.

Sect. 5. Of fuch wiums as are generally ujed in Geometry.
Whatfoever is propofed in Geometry will either be a Problem or a Theorem.

Both which Euclid includes in the general Term of Propofition.
A Problem is that which propofes fomething to be done, and relates more immediately to practical than fpeculative Geometry; That is, it's generally of fuch a Nature, as to be performed by fome known or Commonly-receiv'd Rules, without any Regard had to their Inventions or Demonftrations.

A Theorem is when any Commonly-receiv'd Rule, or any Nezu Propofition is required to be demonfirated, that fo it may from thence forward become a certain Rule, to be rely' $d$ upon in Practice when Occafion requires it. And therefore feveral Rules are often call'd Theorems, by which Operations in Aritbmetick, and Conclufions in Geometry, are perform'd.

Note, By Demonstration is underflood the bigheft Degree of Proof that human Reajon is capable of attaining to, by a Train of Arguments deduced or drawn from fuch plain Axioms, and other Self-evident Truths, as cannot be denied by any one that confiders them.

A Corollary, or Consfctary, is fome Confequent Truth drawn or gain'd from any Demonflration.

A Lemma is the Demonftration of fome Premifes laid down or propofed as preparative to obviate and fhorten the Proof of the Theorem under Confideration.

A Scholium is a brief Commentary or Obfervation made ipon fome precedent Dijcour $\int$ e.
N. B. 1 advife the young Geometer to be very perfeet in the Definitions, viz. Not to reft fatisfied with a bare Remembrance of them; but, that be endeavour to gain a clear Idea or Underftanding of the Things defined; and for that Reafon I have been fuller in every Definition than is ufual.

And, that he may know from whence moft of the following Problems and Theorems contain'd in the Two next Chapters are collected, 1 bave all along cited the Propofition and Book of Euclid's Elements where they may be found.

As for Inflance; at Problem I. there is (3 e. 1.) which phews that it is the Third Propofition in Euclid's Firft Book. The like mu/t be underflood in the Theorems.

CHAP.

## C H A P. II.

## The Firft wubiments, or Leading and Preparatory盎zoblems, in Plain © 6 eometry.

IN order to perform the following Problems, the young Geometer ought to be provided with a thin ftreight Ruler, made either of Brafs or Box-wood, and two Pair of very good Compaffes, viz. one Pair call'd Three-pointed Compaffes, being very ufeful for drawing of Figures or Schemes, either with Black Lead or Ink; and one Pair of plain Compaffes with very fine Points, to meafure and Set off Diftances; alfo be gould have a very good Steel Drawing Pen: And then he may proceed to the Work with this Caution; that be ought to make himfelf Mafter of one Problem before be undertakes the next: That is, be ought to underfand the Defign, and, as far as be can, the Reafon of every Problem, as well as how to do it; and then a little Practice will render them very eafy, they being all grounded upon the efe following Poftulates.

## 耳190fulates or flettitions.

1. That a Right-line may be drawn from any one given Point to another.
2. That a Right-line may be produced, increafed, or made longer from either of its Ends.
3. That upon any given Point (or Center) and with any given Diftance (viz. with any Radius) a Circle may be defcribed.

> PROBLEMI.

Two Rigbt-lines being given, to find their Sum and Difference. (3.e. I.)

Let the given Lines be
Make the horteft Line, as $C B$, Radius, and with it defcribe a Circle: From its Center $C$ fet off the other Line $A C$, and join $A C B$ with a Rigbt-line. Then will $A B=A C+C B$; and $A D=A C-C B$; as was required.


PROBLEM II.

To bifect, or divide a Right-line given (as $A B$ ) into two equal Parts (10.e. I.)

From both Ends of the given Line (viz. $A$ and $B$ ) with any Radius greater than balf its Length, defcribe Two Arches that may crofs each other in two Points, as at $D$ and $F$; then join thofe Points D F with a Right-line, and it will bifect the Line $A B$ in the Middle at $C$; viz. it will make $A C=C B$; as was required.


## PROBLEM III.

To biject a Right-lin'd Angle given, into two equal Angles.
(9.e. I.)

Upon the Angular Point, as at $C$, with any convenient Radius, defcribe an $A r c h$ as $A B$; and from thofe Points $A$ and $B$, defcribe two equal Arches crofling each other, as at $D$; then join the Points $C$ and $D$ with a Right-line, and it will bifect the $\operatorname{Arcb} A B$, and confequently the Angle; as was requir'd.


> PROBLEM IV.

At a Point $A$, in a Right-line given $A B$, to make a Right-lin'd Angle equal to a Right-lined Angle given C. (23. e. I.)

Upon the given Angular Point $C$ defcribe an $A r c h$, as $F D$, (making $C D$ any Radius at Pleafure) and with the fame Radius deforibe the like Arch upon the given Point $A$, as $f d$; that is, make the Arch $f d$ equal to the $\operatorname{Arch} F D$; Then join the Points $A$ and $f$ with a Right-line, and it will form the Angle requir'd.


PROBLEMV.

To draw a Right-line, as $F D$, parallel to a given Right-line $A B$, that Joall pafs thro' any afign'd Point, as at $x$, viz. at any Diftance required. (3I. c.I.)

Take any convenient Point in the given Line, as at $C$, (the farther off $x$ the better;) make $C \times$ Radius, and with it upon the Point $C$, defcribe a Semisircle, as $H M x N$; then make the Arch H M equal to the Arch
 $x N$; thro' the Points $M$ and $x$ draw the Right-line $F D$, and it will be parallel to the Line $A C$, as was requir'd.
PROBLEM VI.

To let fall a Perpendicular, as $C x$, upon a given Rigbt-line $A B$, from any affign'd Point that is not in it, as from $C$. (12. e. I.)

Upon the given Point $C$ defcribe fuch an Arch of a Circle as will crofs the given Line $A B$ in two Points, as at $d$ and $f$; Then bifect the Difance between thofe two Points d $f$ (per Probl. 2.) as at $x$. Draw the Right-line $C x$, and it will be the Perpendicular requir'd.


## PR O BLEM VII.

To erect or raife a Perpendicular upon the End of any given Right-line, as at $B$; or upon any other Point ajsgn'd in it. (II.e. I.)

Upon any Point (taken at an Adventure) out of the given Line, as at $C$, defcribe fuch a Circle as will pafs through the Point from whence the Perpendicular muft be raifed, as at $B$, (viz. make $C B R a$ dius) : And from the Point where the Circle cuts the given Line, as at $A$, draru the Circle's Diameter ACD; then from the Point $D$ draw the Right-line $D B$, and it will be the Peipendicular as was requir'd.

Ch. 2. The Firt kiddmenty or forobienty. 295

PROBLEM VIII.

To divide any given Right-line, as $A B$, into any propofed Number of equal Parts. (10.e.6.)
At the extream Points (or Ends) of the given Line, as at $A$ and $B$, make two equal Angles (by Prob. 4.) continuing their Sides $A D$ and $B C$ to any fufficient Length; then upon thofe Sides, beginning at the Points $A$ and $B$, fet off the propofed Number of equal Parts ( $\int u p p o \int_{e}$ 'em 5.) If Right-lines be drawn (crofs the given Line) from one Point to
 the other, as in the annexed Figure, thofe Lines will divide the given Line $A B$ into the $N u m-$ ber of equal Parts required.
PROBLEMIX.

To defcribe a Circle that 乃ball pafs (or cut) thro' any Three Points given, not lying in a Rigbt-line, as at the Points $A B D$.
Foin the Points $A B$ and $B D$ with Right-lines; then bifect both thofe Lines (per Problem 2.) the Point where the bifecting Lines meet, as at $C$, will be the Center of the Circle required.

The Work of this Problem being well underftood, 'twill be eafy to perform the two following, without any Scheme, viz.


> 1. To find the Center of any Circle given. (I.e. 3.)

By the laft Problem 'tis plain, that if three Points be any where taken in the given Circle's Peripbery, as at $A, B, D$, the Center of that Circle may be found as before.
2. If a Segment of any Circle be given, to compleat or defcribe the whole Circle.
This may be done by taking any three Points in the given Segment's Arch, and then proceed as before.

## PROBLEM X.

Upon a Right-line given, as $A B$, to defcribe an Equilateral Triangle. (I.e. i.)

Make the given Line Radius, and with it, upon each of its extream Points or Ends, as at $A$ and $B$, defcribe an Arch, viz. $A C$ and $B C$; then join the Points $A C$ and $B C$ with Right-lines, and they will make the Triangle requir'd.


## PR O B L E M XI.

Three Right-lines being given, to form them into a Triangle, (provided any two of them, taken together, be longer than the Third) (22.e. I.)

Let the given Lines be
Make either of the forter Lines (as $A C$ ) Radius, and upon either End of the longeft Line (as at A) defcribe an Arch;
 then make the other Line $C B$ Radius, and upon the other End of the longeft Side (as at $B$ ) defcribe another Arch, to crofs the Firft Arch (as at $C$ ): Join the Points $C A$ and $C B$ with Right. lines, and they will form the Triangle required.

## P R O B L E M XII.

Upon a given Right-line, as $A B$, to form a Square. (46. e. I.)
Upon one End of the given Line, as at $B$, erect the Perpendicular $B D$, equal in Length with the given Line, viz. make $B D=A B$; that being done, make the given Line Radius, and upon the Points $A$ and $D$ defcribe equal Arches to crofs each other, as at $C$; then join the Points C $A$ and $C D$ with Right-lines, and they will form the Square required.


Ch. 2. The Firs Iudintents or 10roblemg. 297

## PROBLEM XIII.

Two unequal Right-lines being given, to form or make of them Rightangled Parallelogram.

Let the given Lines be Upon one End of the longed Line, as at $B$, erect a Perpendisular of the fame Length with the 乃oorteft Line $B C$; then from the Point $C$ draw a Line parallel
 and of the fame Length, to $A B$; viz. make $D C=A B$ : Join $D A$ with a Rightoline, and it will form the Oblong or Paralleled gram required.

As for Rhombus's and Rbomboides's, to wit, Oblique angled Papallelograms, they are made, or defrrib'd, after the fame Manner with the two laft Figures; only inftead of erecting the Perpendiculars, you muff ret off their given Angles, and then proceed to draw their Sides parallel, $\mho^{\circ} c$, as before.

## PR OB LEM XIV.

In any given Circle, to inscribe or make a Triangle, whole Angles Ball be equal to the Angles of a given Triangle ; as the Triangle $F D G$, (2. e. 4.)

Note, Any Right-lin'd Figure is said to be infarib'd in a Circle, when all the Angular Points of that Figure do jul touch the Circle's Periphery.

Draw any Right-line (as $H K$ ) fo as juft to touch the Circle, as at $A$; then make the Angle $K A C$ equal to any one Angle of the given Triangle, as $D F G$; and the Angle $H A B$ equal to another Angle of the Triangle, as $D$ G $F$; then will the Angle $B A C$ be equal to the Angle FD G. Join the Points $B$ and $C$ with a Right-line, and 'twill
 form the Triangle required.

PRO.

PROBLEM XV.

In any given Triangle, as A B D, to defcribe a Circle that Saall touch all its Sides. (4.e.4.)

Bifect any two Angles of the Triangle, as $A$ and $B$, and where the bifecting Lines meet (as at $C$ ) will be the Center of the Circle required; and its Radius will be the neareft Diftance to the Sides of the Triangle.


## PROBLEM XVI.

To defcribe a Circle about any given Triangle. (5.e.4.)
This Problem is perform'd in all Refpects like the Ninth, viz. by bifecting any Two Sides of the given Triangle; the Point, where thofe bifecting Lines meet, will be the Center of the Circle sequired.

> P R O B L E M XVII.

To defcribe a Square about any given Circle. (7.e.4.)
Draw two Diameters in the given Circle (as $D A$ and $E B$ ) croffing at Right Angles in the Center $C$; and, with the Circle's Radius C A, defcribe from the .extream Points of thofe Diameters, viz. $A$, $B, D, E$, crofs Arches, as at $F, G, H, K$; then join thofe Points where the Arches crofs with Right-lines, and they will form the Square required.


## PROBLEM XVIII.

In any given Circle, to defcribe the largeft Square it can contain. (6.e.4.)

Having drawn the Diameters, as $D A$ and $E B$, bifecting each other at Right-angles in the Center $C$, (as in the laft Scheme); then join the Points $A, B, D$, and $E$, with Right-lines, viz. $A B, B D, D E, E A$, and they will be Sides of the Square required.

## PROBLEM XIX.

Upon any given Right-line, as $A B$, to defcribe a regular Pentagon, or Five-fided Polygon.

Make the given Line Radius, and upon each End of it defcribe a Circle; and through thofe Points where the Circles crofs each other (as at $G x$ ) draw the Rightline $G e x$ : Upon the Point $G$ with the fame Radius defcribe the Arch HAeB $D$, and laying a Ruler upon the Points $D, e$, mark where it crofles the other Circle, as at $F$. A. gain, lay the Ruler upon the Points $H$,e, and mark where it crolfes the other Circle, as at $C$ : Then from
 the Points $F$ and $C$ (with the fame Radius as before) defcribe crofs Arches, as at $K$ : Join the Points $A F, F K, K C$, and $C B$, with Right-lines, and they will form the Pentagon required, viz. $A F=F K=K C=C B=A B ;$ and the Angles at $A, B$, $C, K, F$ will be equal.

## PROBLEMXX.

In any given Circle, to defcribe a regular Pentagon. (11.e.4.\& Io.e. 3.)

Or, in general Terms, to defcribe any regular Polygou in a Circle.

Draw the Circle's Diameter $D A$, and divide it into as many equal Parts as the propofed Polygon hath Sides; then make the whole Diameter a Radius, and defcribe the two Arches $C A$ and $C D$. If a Right line be drawn from the Point $C$, through the Second of thofe equal Parts in the Diameter, as at 2 , it will affign a Point in the oppofite Semicircle's Periphery, as at $B$. Join $D B$ with a Right-line, and it will be the Side of the Pentagon required.


There

Thefe Twenty Problems are fufficient to exercife the young Practitioner, and bring his Hand to the right Management of a Ruler and Compaffes, wherein I would advife him to be very ready and exact.

As to the Reafon why fuch Lines muft be fo drawn as directed at each Problem, that, I prefume, will fully and clearly appear from the following Theorems; and therefore I have (for Brevity's Sake) omitted giving any Demonflrations of them in this Chapter, defiring the Learner to be fatisfied with the bare Knowledge of doing them only, until he hath fully confidered the Contents of the next Chapter; and then I doubt not but all will appear very plain and eafy.

## C H A P. III.

A Collestion of mof ufeful Iheorems in plain Geometry EDenonfrateo.
Note, In order to Barten feveral of the following Demonfirations, it will be neceflary to premife, that

1. 7 HE Periphery (or Circumference) of cvery Circle (whether great or $/$ mall ) is fuppos'd to be divided into 360 equal Parts, called Degrees; and every one of thofe Degrees are divided into 60 equal Parts, called Minutes, \&c.
2. All Angles are meafured by the Arch of a Circle defcrib'd upon the Angular Point (See Defin. 9. Page 287.) and are efteem'd greater or lefs, according to the Number of Degrees contain'd in that Arch.
3. A Quadrant, or 2 uarter-part of any Circle, is always 90 Degrees, being the Meafure of a Right-angle (Defin. 6. P. 287.) and a Semicircle is 180 Degrees, being the Meafure of twe Right-angles.
4. Equal Arcbes of a Circle, or of equal Circles, meufure equal Angles.

To thofe five general Axioms already laid down in Page 146, (which I here fuppofe the Reader to be very well acquainted with) it will be convenient to underfand thefe following, which begin their Number where the other ended.

## โxioms.

6. Every whole Thing is Greater than its Part. That is, the whole Line $A B$ is $\}$ greater than its Part $A c, \& c$.


The fame is to be unzertood of Superficies's and Solids.
7. Every Whole is EQUal to all its PARTs taken together.

That is, the whole Line $A B$ is equal
to its Parts $A C+c d+d e+e B.\} A-1-1-1-B$
The fame is alfo true in Superficies's and Solids.
8. Thofe Things which being laid one upon another, do agree or meet in all their Parts, are equal one to the other.

But the Converfe of this Axiom, to wit, that equal Things being laid one upon the other will meet, is only true in Lines and Angles, but not in Superficies's, unlefs they be alike, viz. of the fame Figure or Form: As for Inftance, a Circle may be equal in Area to a Square; but if they are laid one upon the other, 'tis plain they cannot meet in all their Parts, becaufe they are unlike Figures. Alfo, a Parallelogram and a Triangle may be equal in their Area's one to another, and both of them may be equal to a Square; but if they are laid one upon the other, they will not meet in all their Parts, \&c.

Note, Befides the Characters already explain'd in Part I, and in other Places of this Tract, thefe following are added.
Viz. $\tau$ denotes an Angle in general, and $\tau<$ fignifies Angles; $\Delta$ fignifies a Triangle ; $\square$ fignifies a Square, and $\square$ denotes a Parallelogram. And when an Angle is denoted by any three Letters (as, A B C) the middle Letter (as B) always denotes the Angular Point; and the other two Letters (as $\boldsymbol{A} \boldsymbol{B}$ and $B C$ ) denote the Lines or Sides of the Triangle which includes that Angle.

Thefe Things being premijed, the young Geometer may proceed to the Demonftrations of the following Theorems; wherein he may perceive an abfolute Neceffity of being well verfed in feveral Things that have been already deliver'd: And alfo it will be very advantageous to fore up feveral ufeful Corallaries and Lemma's, as they become difcover'd Truths: For it often happens, that a Propofition cannot be clearly demonftrated a priori, or of itfelf, without a great Deal of Trouble; therefore it will be ufeful to have Recourfe to thofe Truths that may be affifing in the Demonftrations then in Hand,

## THEOREM I.

If a Right-line fand upon (or meet with) another Right-line, and make Angles with it, they will either be two Right-angles, or two Angles equal to two Right-angles. (I3.e. I.)

## Demonfration.

Suppofe the Lines to be $A B$ and $D C$, meeting in the Point at $C$ : Upon $C$ defcribe any Circle at pleafure ; then will the Arch $A D$ be the Meafure of the $\tau b$, and the Arch $D B$ the Meafure of $<e$; but the Arches $A D+D B=180^{\circ}$, viz. they compleat the Semicircle.
 Confequently the $<b+<e=180^{\circ}$. Which was to be prov'd.

## Corollaries.

1. Hence it follows, that if the $\tau b=90^{\circ}$ then $\tau e=90^{\circ}$; but if $<b$ be obtufe, then the $\tau e$ will be acute, \&cc.

From hence it will be eafy to conceive, that if feveral Rightlines ftand upon, or meet with any Right-line at one and the fame Point, and on the fame Side, then all the Angles taken together will be $=180^{\circ}$, viz. Two Right-angles.

## THEOREM II.

If two Angles interfect (i. 'e. cut or crofs) each other, the two oppofite Angles will be equal. (15. e. I.)

## Demonftration.

Let the two Lines be $A B$ and $D E$, interfecting each other in the Center C.
$\left.\begin{array}{l}\text { Then } \leftarrow b+<e=180^{\circ} \\ \text { And }<b+<a=180^{\circ}\end{array}\right\}$ per laft. Confequently $\leqslant b+\leftarrow e=<b+$ -a, per Axiom 5.

Subtract $\tau b$ on both Sides of the Fquation, and it will leave $\nabla$

$e=\ulcorner a$.
Again, $\tau b+\tau e=180^{\circ}$, as before; and $\tau e+\leftarrow C=$ $380^{\circ}$, confequently $<e+C=<b+\ulcorner e$. Sultraci $<e$, and then $<C=\ulcorner b$. Q. E. D.

## Corollary.

From hence it is evident, that if two Lines interfect each other, they will make four Angles; which, being taken together, will always be equal to Four Right-angles.
THEOREM III.

If a Right-line cut (or crofs) two parallel Lines, it will make the oppofite Angles equal one to another. (29. e. 1.)

Suppofe the two Lines $A B$ and $H K$ to be parallel, and the Right line $D G$ to cut them both at $C$ and $n$ : Upon the Point $C$ (with any Radius) defcribe a Semicircle; and with the fame Radius, upon the Point at $n$, defcribe another Semi circle oppofite to the firt, as in the Figure. Then 'tis plain, and I fuppofe very eafy, to conceive, that if the Center $C$ were mov'd along upon the Line $D G$, until it came to the
 Center at $n$, the two Lines $A B$ and $H K$ would meet and concur, viz. become one Line (for parallel Lines are as it were but one broad Line). Confequently the two Semicircles would alfo meet, and become one entire Circle, like to that in the laft Demonfiration.
And therefore the $\tau y=\leftarrow x=\leftarrow a=<e\}\{$ as before, per

$$
\text { And } \left.\nabla^{\prime}=\leftarrow n=\leftarrow b=\leqslant c\right\}\left\{\begin{array}{l}
\text { laft Theorem }
\end{array}\right.
$$

Corollary.
Hence it follows, that if three, four, or ever fo many Parallellines, are cut or crofs'd by one Right-line, all their oppofite Angles will be equal.

## THEOREMIV.

The three Angles of every plain Triangle are equal to two Right-angles. (32,e, I.)
Confequently, any two Angles of any plain Triangle mufl needs be lefs iban two Right-angles, (17.e. 1.)

## Demonffration.

Let the $\triangle A B C$ be propos'd ; draw the Right line $H K$ parallel to the Side $A B$, juft touching the Vertical Angle $C$; and upon the fame Angular Point $C$ deferibe any Se micircle, and produce the Sides $A C$ and $B C$ to its Periphery. Then will $\leftarrow b=\leftarrow B, \leftarrow a=\leftarrow A$, and $\Sigma_{x}=<C$, per laft Theorem. But $\leftarrow b+\leftarrow a+\leftarrow x=180^{\circ}$, or
 two Right-angles: Confequently $<B+\left\ulcorner A+\left\ulcorner C=180^{\circ}\right.\right.$. per Axiom 5. . Q. E. D.

## Corollary.

Hence it follows, that the two acute Angles of every Right-angled Triangle are equal to a Right-angle, or $90^{\circ}$.

Confequently, if one of the acute Angles be given, the other is alfo given, viz. $90^{\circ}$-the given $\tau$ leaves the other $\tau$.

## THEOREM.V.

If one Side of any plain Triangle be continued $n$ produced beyond, or out of the Triangle, the outward Angle will always is equal to the two inward oppofite Angles. (32. c. 1.)

## Đimonaration.

Let the Side $A B$ of the $\triangle A B C$ be produced out of the $\triangle$, fuppofe to $D, \& z c$ as in the Figure. Then $<z=<A+$ $\leftarrow C$, for the $\leftarrow B+\leftarrow z=$ $180^{\circ}$ per Theorem 1, and the $\tau$ $B+\leftarrow A+\leftarrow C=180^{\circ}$,
 per laft Theorem. Therefore $<$ $B+\leftarrow z=<B+\leftarrow A+<C$, per Axiom 5. Subtract $\leftarrow$ $B$ on both Sides the Equation, and it will leave $\leftarrow z=\ulcorner A+$ -C (per Axiom 2.) Q E. D.

Confequently, the outward Angle (at z) of any plain Triangle, mufs needs be greater than cither of the inward oppofite Angles, viz. greater than $\subset A$, or $\subset C$ (16.e. I.).

## Corollary.

Hence it follows, that if one Angle of any plain Triangle be given, the Sum of the other two Angles is alfo given; for $180^{\circ}$ the given $\ulcorner=$ the other two $<\succ$.

## THEOREM VI.

In every plain Triangle, equal Sides fubtend (viz. are oppofite to) equal Angles. (5. e. I.)
Confequently, equal Angles are fubtended by equal Sides (6.e. I.)

## Demonfration.

Suppofe the $\triangle B C D$ to be an Ifofceles $\triangle$; that is, let $B C=C D$. Bifect the $\tau C$, or (which is all one) make $C A$ perpendicular to $B D$; then will the $\tau \tau$ on each Side of it (viz. $\leftarrow B A C$ and $<D A C$ ) be Rightangles.


Therefore $\left\{\begin{array}{l}\frac{1}{2}<C+\leftarrow B=90^{\circ} \\ \frac{1}{2} \leqslant C+\leftarrow D=90^{\circ}\end{array}\right\}$ per Corol. to Theorem 4. Confequently, $\frac{7}{2}<C+\leftarrow B=\frac{1}{2} \leftarrow C+\leftarrow D$, per Axiom 5 . Subtract $\frac{1}{2} \leqslant C$ from both Sides of the 灰quation, and it will leave $\ulcorner B=\downarrow D$, per Axiom 2. Q. E. D.

## Corollary.

From hence it follows, that the three Angles of an Equilateral Triangle are equal one to another.

## THEOREMVII.

In every plain Triangle, the longeft Side fubtends the greatef Angle. (18.e. 1.)

Confequently, the greatef Angle of any plain Triangle is fubtended by the longef Side.

This Theorem is evident by Infpection only: For, let one of the Sides of any plain Triangle (as $C B$ ) be produced, fuppofe to $E$; join $D E$ with a Right-line; then 'tis evident, that becaufe $C E$ is now made longer than the Side $B C$, therefore the $<$ at $D$ is become larger than it was before by the $\tau B D E:$ And it's plain, the longer the Side $C E$ had been made, the $<$ at $D$ would have been the more enlarged.


THEO-

## THEOREM VIII.

If the Sides of two Triangles are equal, the Angles oppofite to thofe equal Sides will be equal. (8. e. 1.)
The Truth of this Theorem is evident by the two included Triangles in the 6th Theorem, for they have their refpective Sides equal, viz. $B C=C D, B A=D A$, and $C A$ common to both Triangles. And it is there prov'd, that the $\varsigma$ oppofite to thore equal Sides are equal, $E^{\circ} c$. which needs no further Proof.

Note, The Converje of this Theorem bolds not true; for the Angles of two Triangles may be equal, and their oppofite or fubtending Sides unnequal; as will appear at Theorem XII.

## Corollary.

Hence it follows, that Triangles mutually equilateral are alfo mu* tually equiangular ; and,

That Triangles mutually equilateral are equal one to another. (4. \& 26.e. 1.)

## THEOREM IX.

An Angle at the Center of any Circle is always double to the Angle at the Periphery, when both the Angles fand upon the fame Arch. (20.e. 3.) This Theorem hath three Varieties or Cafes.

## Demonftration.

Cafe r. Let the Diameter $D A$, and the Line $D B$, be the two Lines which form the $\subset D$ at the Periphery; draw the Radius $B C$, then $\leftarrow B C A$ is the $\leftarrow$ at the Center. But $\leftarrow B C A=\ulcorner D+$ $\leqslant B$, per $T h .5$. and becaufe $D C=B C$, therefore $<D=<B$, per Theorem 6. confequently $<B C A=2<D$.

Cafe 2. Suppofe the $<B C F$ at the Center to be within the $<B D F$ at the Periphery, (as in the annexed Figure.) Draw the Diameter $D A$; then the $<B C A=2 \leftarrow B D A\}$ and the $\leftarrow F G A=2-F D A\}$ per Cafer. add thefe two . Equations together.


Then will $<B C A+<F C A=2<B D A+2<F D A$, per $A x$. 1. But $<B C A+<F C A=<B C F$, and z $<$ $B D A+2<F D A=2<B D F$. Confequently $<B C F$ $=2 \leftarrow B D F$.

Cafe 3. Again, fuppofe the $\leftarrow B C F$ at the Center to be out of the $-B D F$ at the Periphery. From the Angular Point $D$ at the Periphery draw the Diameter $D A$.
Then $<F C A=2-F D A\}$ and $<B C A=2<B D A\}$ perCafe r . Subtraet this laft Equation from the
 other, and it will leave $\subset F C A-\subset B C A=2<F D A-$ $2 \leftarrow B D A$, per Axiom 2. But $<F C A-<B C A=\leftarrow$ $F C B$, and $2<F D A-2<B D A=2<F D B:$ Canfo quently $<F C B=2<F D B$. Q. E. D.

## Corollary.

Hence 'tis evident, that all Angles at the Periphery, which ftand on the fame Segment or Arcb of a Circle, or upon equal Arches, are equal one to another. (21, \&. 3.)

## THEOREMX.

An Angle in a Semicircle is a Right-angle. (3r, eo 3.) That is, if the Diameter of any Circle be the Side of a Triangle, and : bhe Angle oppofite to that Side be any where in the Circle's Perishery, it west be a Right-angle.

## Dermontrations.

Let $D A$ be the Diameter, and $D B A$ the Triangle, then, $\leftarrow B=90^{\circ}$. Draw the Radius $B C$, then is the $<D B A=$ $\Sigma D+\leftarrow A$. For $<C B D=\tau$ $D$, and $\leftarrow C B A=\ulcorner A$, per Theorem 6. Therefore $<D B A=<C B D$ $+\leftarrow C B A$, per Axiom 5. Again $<$ $D B A+\underset{C}{C D}+\leftarrow A=180^{\circ}, \mathrm{pez}$
 Theorem 4. Confequently, $\subset D B A=90^{2}$ or a Righte-angle. Q.E. D.

$$
\mathrm{Rr} 2
$$

Cex:-

## Corollaries.

I. Hence it will be eary to conceive, that an Angle made in any Segment lefs than a Semicircle will be obtufe, or greater than a Right-angle.
2. And an Angle, made in any Segment greater than a Semicircle, muft confequently be acute.

## THEOREM XI.

In any Right-angled Triangle, the Square which is made of the Hypothenufe, or Side fubtending the Rigbt-angle, is equal to both the Squares which are made of the Sides including the Right-angle. (47.e. I.)

There are feveral Ways of demonftrating this noble and ufeful Theorem, but, I prefume, none more eafy to be underftood by a Learner than that which I hall here propofe: And, in order thereto, 'twill be neceffary to premife the following Lemma's.

## 球emma 1.

A Rigbt-line is faid to be multiply'd with a Right-line, when either a Square, or other Right-angled Parallelogram, is made of the two Lines.

That is, the Area of any Right-angled Parallelogram is equal to the Product of thofe Numbers which exprefs the Meafure of its Sides.

Thus, if $A B=6$ Inches and $A C$ $=3$ Inches: Then $A B \times A C=6$ $\times 3=18$ quare Inches ; which is the Area of the Parallelogram $A B C D$.


## 쿤 cmm 2.

If a Right-line be any way cut into two Parts, the Square of the whole Line will be equal to the Squares of each Part, and a double Reftangle or Parallelogram made of both the Parts, (4. e. 2.) that is, if the Line $S$ be cut into the two Parts $B$ and $C$; then is $S=B+C$ :


But if both the Sides of the 平quation be involv'd, it will be $S S=B B+2 B C+C C$.

## alemma 3.

The Area of every Right-angled Triangle is half the Parallelogram made of its Bafe and Perpendicular.

For $B \times C=$ the Area of the whole Parallelogram, by the firt Lemma. And $\triangle$ $B C H+\triangle b c H=$ the Parallelogram; but
 $B=b$, and $C=c$. Therefore $\frac{1}{2} B \times C=$ the Area of each $\triangle$, viz. $\frac{1}{2} B \times C^{2}+\frac{1}{2} b \times c B \times C$.

Thefe Things being premifed, let us fuppofe the Triangle $B C$ $H$ to be a Right-angled Triangle, viz. the Side $C$ perpendicular to the Side $B$; then will $B B+C C=H H$.

## ©emonffration.

Make a Square whofe Side is $=$ $B+C$, and draw the included Square whofe Side is $=H$, as in the Scheme: Then will the Area of the great Square be equal to the Area of the four Triangles +HH ; but the Area of each $\triangle=\frac{1}{2} B C$, or $B \times C$, per Lemma 3. Therefore the $4 \Delta$ 's $=\frac{1}{2} B C \times 4=$ $2 B C$, confequently, the Area of the great Square is $H H+2 B C$. Involve $B+C$, and it will be $B B$ $+2 B C+C C=$ the Area of the great Square ; per Lemma 3.
 Confequently, $\mathrm{HH}+2 \mathrm{BC}=$ $B B+2 B C+C C$, per Axiom 5. Subtract $2 B C$ from both Sides of the Equation, and there will remain $H H=B B+C C$.

To illuftrate this Theorem by Numbers, let us
Suppofe $C=3 . B=4$. and $H=5$.
Then will $C C=9 . B B=16$. and $H H=25$.
Confequently, $B B+C C=H H=16+9=25$.

## Conjeciary.

From this admirable Theorem (faid to be firft invented by Pythagoras) is deduced the Method of adding and fubtracting Squares, Parallelograms, Circles, $\mathcal{E}^{\circ}$.

## THEOREMXII.

In any Right-angled Triangle, a Perpendicular being let fall from the Right-angle upon the Hypotbenufe will divide the Triangle into twa Right-angled Triangles, which will be both fimilar (er alike) to the firft Triangle, and to each otber.

Note, All plain Triangles are fuid to be fimilar (viz. alike) woben each fingle Angle in one of the Triangles is equal to sach fongle Angle of the other; but if any two fingle Angles of one Iriangic are equal to two fingle Angles of the other, the third Angle will be equal. Per Theo. 4 -
F. In the Right-angled $\triangle B A C$, let $A P$ be fuppofed perpendicular to the $H y$. pothanufe $B C$; then $\subset B A P=\leftarrow C$. For $\subset B A P+\leftarrow P=90^{\circ}$, and $\leftarrow$ $B+\leftarrow C=00^{\circ}$, per Corollary to Theorem 4. Therefore the $<B A P=<$
 C, per Axsom 5.again, $\leftarrow P A C+\leftarrow$ $C=90$, and $\angle B+\nabla C=90^{\circ}$. Therefore $\subset P A C=\leftarrow$ $B$, \&ic. Confequently the $\triangle B A P$ is alike to the $\triangle A C P ;$ and each is like to the whole $\triangle B A C$.
2. Or if a Rigbt-line be drawn parallel to one of the Sides of any plain Triangle, (viz. within it) it will cut off a Triangle fimilar or alike to the whole Triangle. Thus:

In the $\triangle A B D$ draw the Rightline $a b$ parallel to the Side $A B$; then will the included $\triangle a D b$ be
 like the $\triangle A D B:$ For $\leftarrow a=\leftarrow A$ and $\leftarrow b=\leftarrow B$, per Thow orem 3 ; and $\leftarrow D$ is common to both the Triangles; Erga, \&rc.

## THEOREM XIII.

If two Triangles are alike, their like Sides will be proportional.
That is, thofe Sides which fubtend the equal Angles, as alfo thofe Sides which are about the equal Angles, will be proportional to each other ; and confequently, if any truo Triangles have their Sides proportional, their Angles are equal. ( $4,5,6,7.0 .6$. )

## Dimonftration.

Let the fimilar Triangles in the Scheme of the laft Theoren be here propofed again.

Then it will be $B P: A P:: A P: C P$, according to this $T$ theorem. Ergo $B P \times C P=A P \times A P$.

Firf.
Let us fuppofe the aforefaid Right-angled $\triangle B A C$ cut through the Perpendicular $A P$, and there open'd until the Sides $B A$ and $C A$ become one Right-line. Let the Sides $B P$ and $C P$ be continued until they meet in $E$; then compleat the Parallelograms by drawing the paraliel Lines GLC, $H A P, G H B$, and $L A P$, as in the Figure.


Then it is evident, that the $\triangle B H A=\triangle B P A$, and the $\triangle C P A=\triangle C L A$; alfo that the $\triangle B E C=\triangle B G C$, becaufe all their refpective Sides are equal.

But the $\triangle E H A+\triangle C L A+\Xi H G L A=\triangle B P A+$ $\triangle C P A+\square A P E P$. Now if from both Sides of this $\mathbb{E}$ 设ation there be fubtracted the equal Triangles, there will remain $\square$ $H G L A=\square A P E P$. But $\square H G L A=B P \times C P$, and ㅁ $A P E P=A P \times A P$. Confequently $B P: A P:: A P$ : C.P. Which was to be prov'd.

Or otherwife, thus:
Suppore the $\triangle B A C$ to be Right-angled at $A$ : Upon the $\leftarrow$ Point $C$, with the Radius $C$ A defcribe a Circle, and continue the Hypotbenufe $B C$ to $Z$; join $Z A$ and $A D$ with Right-lines; then will the $\triangle B A D$ be like to the $\triangle B Z$. For $<D A B+$

$\leftarrow D A C=90^{\circ}$, by Confruction. And $\leftarrow Z A C+\leftarrow D A C$ $=90^{\circ}$, by Theorem X . Therefore $\leftarrow D A B+\leftarrow D A C=\leftarrow$ Z $A C+\leftarrow D A C$. By Axiom 5. fubtraEt $-D A G$ from both Sides of the \#quation, and there will remain $\leftarrow D A B=\leftarrow Z A C$. But $\leftarrow$ Z $A C=\subset C Z A$, by Throrem6. And $<B$ is common
to both Triangles. Therefore $<B D A=<B A Z$, by Theorem 6 , confequently $\triangle B A D$ is like to $\triangle B Z A$.
 Viz. $b: b+c:: b-c: b$; that is, $B A: B Z:: B \quad D: B A$. Q. E. D.

## Corollaries.

1. Hence it is evident, that, in any Right-angled Triangle, a Perpendicular, being let fall from the Right-angle upon the Hypothenufe, will be a Mean proportional between the Segments of the Hypothenufe: That is, $B P: P A:: P A: P C$.
2. The Bafe ( $B A$ ) is a Mean proportional between the Hypothenufe ( $B C$ ) and that Segment of the Hypothenufe next to the Bafe , (viz. $B P$ ) that is, $B C: B A:: B A: B P$.
3. The Cathetus ( $\triangle C$ ) is a Mean
 proportional between the Hypothenufe ( $B C$ ) and that Segment of the Hypothenufe next to the Cathetus, (viz. PC): That is, BC: $A C:: A C: P C$.

## Scholium.

I have been more large upon this mof excellent Theorem, in giving a double Demonfration of it, becaufe it is fo univerfally ufeful in all Parts of the Matbematicks: For the Bufinefs of Trigonometry (both Plain and Spherical) wholly depends upon it; and therefore one may truly fay, that Aftronomy, Dialling, Navigation, Surveying, Opticks, \&c. depend upon a due Application of it.

And of its Ufe in Geometry, Des-Cartes takes particular Notice; as you may find in Dr. Pell's Algebra, Pag. 65, whofe Words are thefe :

Des.Cartes, in a Letter not yet printed, writes thus: "In © fearching the Solution of Geometrical Quefions, I always make " ufe of Lines parallel and perpendicular, as much as is poffible, " [he means as many Lines as are ueful] and I confider no " other Theorems but thefe two, [the Sides of like Trian© gles have like Proportion]. And [in Rectangle Triangles
sf the Square of the greatef Side is equal to the Squares of the two other " Sides.] And I am not afraid to fuppofe many unknown Quanti${ }^{6}$ © ties, that I may reduce the propos'd Queftion to fuch Terms, as "to depend on no other Theorems but there Two."

This I thought convenient to infert, that the young Learner may. fee how the great Des-Cartes efteem'd thee two Theorems, viz. the lat, and Theorem II; for, in Truth, all the precedent Theorems are only (as it were) Preparative to there Two.

This lat Theorem demonftrates the Reafon of the Method used in finding out Proportional Lines; as in the Three following Pro blems.

> PROBLEM I.

Two Right-lines being given to find a Third in Proportion to them. (II.e.6.)

Let there two Lines be Set the Two given Lines at any Angle in the Point $A$, and produce the Line $A B$ to $C$, making $B C=A D$; join the Points $B$ $D$ with a Right-line, and draw
 $C F$ parallel to $B D$; then will the $\triangle A B D$ be like the $\triangle A C F$. Therefore $A B: B C(=A D)$ $:: A D: D F$, which is the third Proportional requir'd.
PROBLEM II.

Iwo Right-lines being given, to find a Mean proportional Line between. them. (13.e.6.)

Let the given Lines be
Join the two given Lines into one, viz. make $B C=B P+P C$, and upon $B C$, as Diameter, defcribe a Semicircle; then upon the Point $P$,
 where the two Lines meet erect a Perpendicular to touch dee

Circle's Periphery, as $P A$, and it will be the Mean proportional requir'd, viz. $B P: A P:: A P: P C$.

By this Problem'tis eafy to conceive how to make a Square equal to any given Parallelogram. (14. e. 6.)

For if $B P$ be the Length, and $P C$ be the Breadth of the given Parallelogram, then will $A P$ be the Side of the Square, equal in Area to that Parallelogram.

PROBLEM III.

Three Right-lines being given, to find a fourth Proportional Line. (12.e. 6.)

Suppofe the three Lines


Upon the longeft Line $A B$ fet off the next longeft Line $A D$; viz. make $D B=A B-A D$; then upon the Point $D$ fet the other Line $D C$ at an Angle, either right or oblique, and draw the Right line $A C$ continuing it a fufficient Length; make $B F$ parallel to $D C$, and it will be the fourth Proportional requir'd; that is, $A D: D C:: A B: B F$.

## THEOREM XIV.

If any Angle of a plain Triangle be bifected (viz. divided into two equal Angles) with a Right-line, (viz. as $C$ A is fuppos'd to do the Angle $B C D$ ) it will cut the oppofite Side (viz. B D) in Proportion to the otber two Sides of the Triangle (3.e.6.) i. e. $B A: B C:: A D: C D$. Demonfration.
Produce the Side $D C$, until $C Z$ $=C B$ : join the Points $Z B$ with a Right-line, and draw the Line $F C$ parallel to $B D$; whence the $<Z$ $=-C B Z$ per Theorem 6. and $-Z$ $+\subset C B Z$, or $2<C B Z=\tau$ $B C D$, per Theorem 5 ; or, dividing both Sides of the Æquation by 2, $C B Z=\frac{1}{8}<B C D$. But $\frac{1}{2}<B$

$C D=\leftarrow A C B=\leftarrow A C D$ by the Hypotbefis, therefore $<A C B$ $=<C B Z$ per Axiom 5: Whence $A C$ is parallel to $B Z$ per Tbeorem 3 , and the Triangles $B D Z, A D C$, and $F C Z$ are fimilar by the fecond Figure to Theorem 12, confequently $B A(=F C): B C(=$ ZC) $:: A D: C D . Q . E . D$.

## THEOREMXV.

If two Right-lines (bowfoever drawn) within a Circle do cut each other, the Reciangle made of the Segments (or Parts) of the one Line, will be equal to the Rectangle made of the Segments (or Parts) of the other Line. (35.e. 3.)
That is, if two Lines (as $A B$ and $C D$ ) do cut each other in any Point, as at $x$, then will $A x \times B x=D x \times C \times$.

## Demortfration.

Join the Points of $A C$ and $B D$ with Right-lines, then will the $\triangle C \times A$ be like to $\triangle B x D$ : For $\leftarrow B=\leftarrow C$ and $\leftarrow A$ $=\ulcorner D$. by Corollary to Theorem 9. and $<A \times C=<B \times D$. by Theorem 2.
 Therefore it will be $A x: D:: C x: B x$, by Theorem 13. Confequently $A x \times B x=D x \times C x$. Q.E. D.

## THEOREM XVI.

If two Right-Lines are fo drawn within a Circle, as, Being continued, they will meet in a Point out of the Circle's Periphery, the Rectangle made of the one whole Line, and its Part out of the Circle, will be equal to the Rectangle of the other whole Line, and its Part out of the Circle. (36, 37. e. 3.)
That is, if the Lines $A C$ and $D B$ be continued unto the Point $Z$; then will $A Z \times C Z=D Z$ $\times B Z$.

## まrmontration.

Draw the Lines $A B$ and $C D$, then will $\triangle C Z D$ be like to the
 $\triangle B Z A$, for $\subset A=\ulcorner D$, and $\ulcorner Z$ is common to both Triangles. confequently, $\leftarrow A B Z=\leftarrow D C Z$, by Theorem 4. therefore $A Z$ $: B Z:: D Z:: C Z . \quad E r g o, A Z \times C Z=D Z \times B Z$.

## THEOREM XVII.

If from any Angle of a plain Triangle infcribed in a Circle there be let fall a Perpendicular upon the oppogite Side, as D P ; as that Perpen-
dicular is in Proportion to one of the Sides including the Angle，fo is the other Side including the Angle to the Diameter of the Circle．

## ©Dentonftration．

Let $B C D$ be the propofed Triangle． From the $\checkmark$ at $D$ draw the Diameter $D A$ ；then will $\ulcorner A=\ulcorner B$ ，becaufe they both ftand upon the fame Arch $D C$ ， and $\tau D C A=90^{\circ}$ ，by Theorem 10 ． confequently the $<A D C=\leftarrow B D P$ ， by Theoren 4．Therefore $\triangle D C A$ is like to the $\triangle D P B$ ；and therefore，$D P$ ：
 $D B:: D G: D A$ ；or $D P: D G::$ $D B: D A . \quad$ Q．E．D．

## THEOREM XVIII．

If any Quadrangle（that is，a Trapezium）be infcrib＇d within a Circle， the two oppofite Angles，taken together，are equal to two Right－Angles， viz． $18^{\circ}$（22．e．3．）
That is，in the 2 uadrangle $A B C D$ the $\tau A+\leftarrow C=180^{\circ}$ ． And the $\leftarrow B+\leftarrow D=180^{\circ}$ ．

## EDemonftration．

Draw the two Diagonals $A C$ and $B D$ ； then will the $\leftarrow B D A=\ulcorner B C A$ ， and the $<B D C=<B A C$ by $C 0$－ sollary to Theorem 9 ．But $<A B C+$ $\varsigma B C A+\tau B A C=180^{\circ}$ ．by Theorem 4．and the $<B D A+\leftarrow B D C$
 $=\left\ulcorner A D C\right.$ ．Therefore the $\left\ulcorner A B C+\leftarrow A D C=180^{\circ}\right.$ ． and by the fame $W$ ay of arguing it may be prov＇d，that the $\leftarrow$ $B A D+\left\ulcorner B C D=180^{\circ}\right.$ ．Q．E．D．

## THEOREM XIX．

If in any Quadrangle infcrib＇d within a Circle there be drazun two Diagonals，as AC and B D，the Rectangle made of the two Diago－ nals will be equal to both the Rectangles made of the oppofite Side of the Quadrangle．
That is，$A C \times B D=A B \times C D+A D \times B C$ ．

## Dimonftration.

Make the Arch $D G=\operatorname{Arch} B C$, and from the Points $A G$ draw the Line $A f$, and it will form the $\triangle A f D$, like to the $\triangle A, B C$ : For the $\tau f A D=$ $\subset B A C$, becaufe the Arches $D G$ and $B C$ are equal.

Again, the $<f D A=\Sigma B C A$, becaufe they both ftand upon the Arch $A B$ : Confequently, the $\ulcorner A f D=\leftarrow A B C$,
 by Theorem 4. Therefore it will be $A C: B C:: A D: D f$, by Theorenn 13. $\operatorname{Ergo} \frac{B C \times A D}{A C}=D f$.

Again, the $\triangle B A f$ and $\triangle A C D$ are alike : For $\leftarrow A B f$ $=\longleftarrow A C D$, and $\ulcorner B A f=\ulcorner C A D$, becaufe the $\leftarrow f A D$ $=\left\ulcorner B A C\right.$, and the $\digamma_{C A f}$ is common to both Triangles. Confequently, the $\leftarrow A f B=<A D G$. Therefore $A C: C D$ $:: A B: B f$, by Theorem 13. Ergo $\frac{C D \times A B}{A C}=B f$. But $D f+B f=B D$. Confequently, $B C \times A D+C D \times A B$ $=B D \times A C . \quad$ Q.E.D.

$$
T H E O R E M \mathcal{X X}
$$

All Parallelograms (whether Right or Oblique angled) that fand upon the fame Bafe, or upon equal Bafes, and betwixt the fame Parallels; are equal to one another. $(35.8 \% 36$. e. 1.) That is, $\square A \cdot C D=a b \subset D$.

## Demontration.

Becaufe $A B=C D=a b$, by Suppofition, therefore $A a=B b$; for $B a$ is common to both. And becaufe $A C=B D$, and the $\leftarrow A=\nabla$ $B$, therefore the $\triangle A C a=\triangle B D b$ : And if from both Triangles there be taken the $\Delta B x$ a common to both, there will remain the Trapezium $A B \times C$
 $=a b \times D$, per $A \times i o m 5$.

But the Trapezium $A B \times C+\triangle C \times D=\square A B C D$. and the Trapezium $a b \times D+\triangle C \times D=\square a b C D$. confequently $\square$ $A B C D=ص a b C D$. Q, E.D.

Corollary.
Hence it will be eafy to conceive, that all Triangles which ftand upon the fame Bafe, or upon equal Bafes, and between the fame Parallels, (viz. baving the fame Height) are equal one to another. ( 37 \& 38 e. I.)

For all Triangles are the Halfs of their circumfcribing Parallelograms; and therefore, if the Wholes be equal, their Halfs will alfo be equal.

## THEOREM XXI.

Parallelograms (and confequently Triangles) which bave the fame Heighth, have the fame Proportion one to another as their Bafe's have. (1.e.6.)

## Dimonffration.

Draw $A F$ parallel to $B G$, and draw $A B, C D, F G$ Perpendiculars to them. Then will $B D \times A B=\square A B C D$. And becaufe $C D=A B$, therefore $D G$ $\times A B=\square C D F G$, but $B D: D G$ :: $B D \times A B: D G \times A B$. And con-
 fequently $\triangle A B D: \triangle C D G:: B D: D G, \& c$.
Q.E.D.

## THEOREM XXII.

Like Triangles are in a duplicate Ratio to that of their homologous Sides. (19.e. 6.)

That is, the Area's of like Triangles are in Proportion one to another as are the Squares of their like Sides.

## Demonfration.

Suppore the $\triangle B C D$ and $\triangle b c d$ to be alike, and their like Sides to be thofe mark'd with the fame Letters.


Let

Let $A$ and $a$ be Perpendiculars to the two Bafes $D$ and $d$. $\left.\begin{array}{rl}\text { Then } \frac{1}{2} D A & =\text { the Area of } \triangle B C D \\ \text { And } \frac{1}{2} d a & =\text { the Area of } \triangle b c d\end{array}\right\}$ By Lemma 3, Page 303. $\left.\begin{array}{c|l|l}\text { But } & \begin{array}{l}B: b:: D: d \\ \text { And }\end{array} & 2 \\ B: b:: A: a\end{array}\right\} \& \&$. By Theorem 13.
Confeq. $3 D: d: A: a$
$3 \therefore \quad 4 \quad D=d A$
$4 \times \frac{2}{2} D d 5 \frac{\frac{3}{2}}{2} D D d a=\frac{1}{2} D d d A$. By Axiom 3.
5, Hence $|6| D D: d d:: \frac{x}{2} D A: \frac{1}{2} d a$. And fo for other Sides. Q. E. D.

## THEOREM XXIII.

In every Obtufe-angled Triangle (as BCD) the Square of the Side fubtending the obtufe Angle (as D) is greater than the Squares of the other two Sides ( $B$ and $C$ ) by a double Rectangle made out of one of the Sides (as $B)$ and the Segment or Part of that Side produced (as a) until it meet with the Perpendicular ( $P$ ) let fall upon it. (12e.2.)
That is, $D D=B B+C C+2 B a$.

## Demonfration.



Hence it is evident, that, if the Sides of any Obtufe-angled Triangle are given, the Segment (a) of the Side produced (or the Perpendicular $P$ ) may be eafily found.

THEOREM XXIV.

If a Perpendicular (as $P$ ) be let fall into any Acute-angled Triangle (as BCD), the Square of either of the Two Sides (as D) is le/s than the Squares of the other Sideg and that Side upon which the Perpendicular falls (viz. C and B) by a double Rectangle made of the Side B, and that Segment or Part of it (viz. a) which lies next to the Side C. (13.e. 2.)
That is, $D D+2 B a=B B+C C$,
320 Elements of ©eometry. Part III.

## Demonftration.



Hence it follows, that, if the Sides of any Acute-angled Triangle be known, the Perpendicular $P$, and the Segments of the Side whereon it falls (viz. a, e.) may be eafily found.

## C H A P. IV.

The salution of feveral Eafy froblems in plain Geometry, whereby the Learner may (in Part) perceive the Application or Ufe of the foregaing Tbeorems.

NOTE, when a Line, or the Side of any plain Triangle, is any Way cut into two or more Parts, either by a Perpendicular Line let fall upon it, or otherwife, thofe $P$ arts are ufually call' $d$ Segments; and fo much as one of thofe Parts is longer than the other, is coll' $d$ the Difference of the Segments.

And when any Side of a Triangle, or any Segment of its Side is given, 'tis ufually mark'd with a fmall Line crofs it, thus:- and thofe Sides or Parts of Sides, tbat are fought, are marked with four Points, thus: $\quad \cdots$

## PROBLEMI.

To cut or divide a given Right.line (as $S$ ) into Extreme and Mean Proportion. (II, e. 2.)
That is, to divide a Line fo, that the Square of the greater Segment (or Part) a, may be equal to the Rectangle made of the whole Line $S$, and the leffer Segment $e$.

$$
\begin{array}{l|l|l}
\text { Viz. } & \text { Se } a, \text { by the Problem. } \\
\text { And } & S-a=e, \text { for } S=a+c \\
2 & S-a
\end{array}
$$



$$
1 \div S
$$



Note, The laft Problem cannot be truly anfwered by Numbers, but Geometrically it may be performed, thus:

1. Make a Square whofe Side is $=S$ the given Line, and bifect one of its Sides in the Middle, as at $C$; upon the Point $C$ defcribe fuch a Semicircle as will pals through the remoteft Points of the Square, and compleat its Diameter.

2. Then will either Part of the Diameter, on each End of the Side $S$, be $\mp a$, the greaier Segment fought.

$$
\text { But } a+S: S:: S: a \text {. By Theorem } 13 .
$$ Ergo, $a a+S a=S S$. Which was to be done.

## PROBLEMII.

The Bafe of any Right-angled Triangle, and the Difference between the Hypothenufe and Cathetus being given, to find the Cathetus, $\xi^{\circ} c$.


Here you fee that either Way raifes the fame equation; neither is there any conftant Method or Road to be obferved in folving Geometrical Problems; but every one makes U'fe of fuch Ways and Theorems as happen to come firft into their Mind, the Refult being every Way the fame.
PROBLEM III.

The Difference between the Bare and Hypothenufe of any Rigbt-angled Triangle, and the Difference between the Cathetus and Hypothenufe being both given, to find the Triangle.


The two lan Steps are equal, by Theorem II. Consequently, if thofe Things that are equal in both be taken away, the Remainders will be equal. By Axiom 2 .

That is 10 aa $=2 d x=1600$

$2+1113 x+a=65=e$ The Cathetus.
$1+2+\left.11\right|_{14} \mid d+x+a=97$ The Hypothenufe.

PROBLEM IV.

The Hypothenufe, and the Sum of the other two Sides, of any Rightangled Triangle, being given, thence to find the Sides.


$$
2+7
$$

Chap. 4. Of Zefolbing problems.


PROBLEMV.

The Hypothenufe, and the Difference of the other two Sides of any Right-angled Triangle being given, to find the Sides.


## PROBLEMVI.

In any Right-angled Triangle, either the Bafe, or Cathetus, and the alternate Segment of the Hyporhenufe made by a Perpendicular let fall from the Right-angle, being given, to find the other Segment.


I thail now thew the Geometrical Confruction (or Solution) of the three Cales of 2uadiatick Equations promifed in 202. Let the firft Example be that above, viz. $a a+b a=c c$. Cafe $\mathbf{I}$.

Make the Co efficient $b$, and the Root of the Refolvend (which is here) c, into a Right-angled Pa rallelogram. And upun the middle Point of the Side $=b$, defcrite fuch a Semicircle, as will pafs through the remoteft Points or Angles of the Parallelogram, compleating its Dia-
 meter, as in the annexed Scheme.
Then will either Part of the Diameter, on each End, be equal to $a$; the other Part will be $a+b$, and the Side $c$ will be a mean Proportional between them: That is, $a+b: c:: c: a$. By Theorem 13, confequently $a a+b a=c c$. Which was to be done.

## PROBLEMVII.

The Difference between the Bafe and Cathetus of any Right-angled Triangle, and the Perpendicular let fall from the Right-angle upon the Hypothenufe, being given; thence to find the Hypothenufe, छ'c.


The Geometrical Conftruction of this Cafe 2, viz. aa - $2 p a=d d$ may be performed in the very fame Manner as the laft Cafe was; that is, by making a Rightangled Parallelogram of the Coefficient $2 p$ and the $V d d$, viz. $d$, \&cc. As in the annexed Figurc.


Then

## Chap. 4. Of 位folving feroblems.

Then will the greater Part of the Diameter to one End of the Parallelogram be $=a$, and the leffer Part will be $a-2 p$. For $a$ : $d:: d: a-2 p$ by Theorem 13 . Confequently, $a a-2 p a=d d$. Which was to be done.

## PROBLEM VIII.

The Hypothenufe of any Right-angled Triangle, and the Perpendicular let fall from the Right-angle upon the Hypothenufe, being given, to find the greater Segment of the Hypothenufe, E®c.


The Geometrical Conftruction of Cafe 3, viz. $b a-a a=p p$, may be thus performed: Draw a Rightline (of any convenient Length at Pleafure) and near its Middle erect a Perpendicular $=p$, viz. of the fame Length with the Root of the Refolvend. From the top Point or upper End of that Perpendicular, fet off Half the Length of the Co-efficient, viz. $\frac{b}{2}$ and upon the Point where $\frac{b}{2}$ juft touches the firft Line (with the fame Diftance) defcribe a Se micircle; then will its Diameter $h$ be cut by the Perpendicular $p$ into two Segments, which are the two Values of the Root $a$, viz. the greater and lefer Roots, both taken together, being always equal to the Co-efficient : (vide Page 201.) For $b-a: p:: p: a$ by Theorem 13. Ergo, $b a-a a=p p$, Which was to be done.

PR dB LEM IX.

The Perimeter, i. e. the Sum of all the three Sides of any Right-angled Triangle, and its Area, being given, thence to find each Side.


In any Right-angled Triangle a Perpendicular being let fall from the
Right-angle upon the Hypothenufe; if the Sum of each Segment, when added to its adjacent or next Side, be given, thence to find each
Side, and the Segments.
Viz. If $\left|{ }^{1}\right| a+u=s=108$

And
To find


Chap. 4. Of kecolving loroblents.

| $12 \div\left. a^{1} 13\right\|^{\prime}=\frac{s-2 s a}{a}$ |  |
| :---: | :---: |
| $13 \times 2 z$ | $\underline{2 z s s}-4 z$ |
|  |  |
| $9+14$ | $15{ }^{z z}=s s^{2}-2 s a$ |
|  | 16 zza $=$ ssa-2saa $+2 z s s-4 z s a$ |
| $16 \pm$ | ${ }^{17}$ 2saa $+z z a+4 z s a-s s a=2 z s s$ |
| $17 \div 2 s$ | $18 a a+\frac{z z a}{2 s}$ |
| tute | $192 x=\frac{z z}{2 s}+2 z-\frac{1}{2} s=114$ |
| hen | $20 a a+2 x a=z s=7776$ |
| 20.6 | $21 a a+2 x a+x x=z s+x x=1$ |
| 21 | $22 a+x=\sqrt{25+x x}=105$ |
| 22 - $x$ | $23 a=\sqrt{z s}+x x:-x=48$ |
| 1 - 23 | $24.4=60=$ The Bafe. |
|  | $25 c=-2 s=27$ |
|  | $26 y=45=$ the Cathetus. |
| + 25 | $27 \mathrm{a}+e=75=$ the Hypothenu |

## PROBLEM XI.

The Difference of the Sides of any Oblique-angled plain Triangle, the Difference of the Segments of the Bafe, and the Difference between the greater Side and the Bafe, being given, to find the Bafe, $\Xi^{\circ}$.

$P \mathrm{R}$

## PROBLEM XII.

The Difference of the Sides of any plain Triangle, the Difference of the Segments of the Bafe, and the Perpendicular let fall from the Vertical Angle, being given, thence to find all the Sides.


## PROBLEM XIII.

The Sum of the two Sides of any plain Triangle, the Difference of the Segments of the Bafe, and the Rerpendicular let fall from the

Chap. 4. Of ferolbing forobtems.
Vertical Angle upon the Bafe, being given, thence to find the Bafe and the Sides.


## PROBLEM XIV.

The Area of any Oblique-angled plain Triangle, the Difference of the Sides, and the Difference of the Segments of the Bafe, being given, thence to find the Bafe, Eric.
Let $\left\{\begin{array}{l|l}1 & A=141750=\text { the Area. } \\ 2 & d=405 \\ 3 & b=495\end{array}\right.$


## PROBLEM XV.

There is an Oblique-angled plain Triangle, wherein a Perpendicular is let fall from the Vertical Angle upon the Bare; the leaft Side and the Bafe are given; and the Rectangle of the Difference of the Sides into the leaft Side is equal to the Square of the Difference of the Segments of the Bafe: 'Tis requir'd to find the Segments of the Bafe, $\underbrace{\circ} c$.


The Value of $a$, in this 疍quation, may be found as in the Examples Page 238, viz. by putting $r+e=a$, \&c. as in thofe Examples you will find $a=37,55502$, \&c.

## PROBLEM XVI.

The three Chords or Subtenfes of throe Arches compleating a Semicircle being each given, thence to find the Diameter of that Circle. That is,

Any Trapezium being infcrib'd in a Semicircle, if one of its Sides be the Diameter, and the other three Sides be given, thence to find the Diameter or fourth Side.


This R equation being folv'd as in Example 2, Page 240, you will find $a=8,0558 \mathrm{f}$, \&c.

## PROBLEM XVII.

In any Right-angled Triangle, the Area and the Sum of the Hypothenufe, when added to either Side, being given, thence to find the Sides, \&rc.


$6,9,11$
$6,9,11|12| \frac{4 A A}{a a}+a a=y y=s s-\frac{4 s A}{a}+\frac{4 A A}{a a}$
12, That is $13 a a=s s-\frac{4 s A}{a}$
$13 \times a 14 a a a=s s a-4 s A$
$14+15$ ssa-aaa $=4 s A$
15, in Num. $\left.16\right|_{14400 a-a a a}=648000$
The Value of $a$, in this 灰quation, may be found as in the third Example, Page 241 ; that is, by making $r+e=a$, \&cc. it will be found that $a=60$.

## P R O B L E M XVIII.

There is an Oblique-angled plain Triangle, wherein a Perpendicular is let fall from the Vertical Angle upon the Bafe; the Sum of each Segment of the Bare, when added to its adjacent or next Side, and the Area of the Triangle, are given, to find the Perpendicular and each Side.


| 6, | 19 | 20 | $\frac{z z-a a}{2 z}+\frac{s s-a a}{2 s}=\frac{2 A}{a}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| 20 | $\times$ | $2 z$ | 21 | $z z-a a+\frac{z z s-z a a}{s}=\frac{4 z a}{a}$ |
| 21 | $\times$ | $s$ | 22 | $z z s-s a a+z s s-z a a=\frac{4 z A}{a}$ |
| 22 | $\times$ | $a$ | 23 | $z z s a-s a a a+z s s a-z a a a=4 z A s$ |
| 23, | Numb. | 24 | $900000 a-a a a=243000000$ |  |

Here $a=300$ found as in the laft Problem.

## P R O B L E M XIX.

There is a Right-angled Triangle, wherein a Right-line is drawn parallel to the Cathetus; there is given the Cathetus, that Segment of the Hypothenufe next to the Cathetus, and the alternate Segment of the Bafe; thence to find the Bafe, E ${ }^{\circ}$ c.


For a Solution of this Equation, let it be made $a a a a+b a a a+c a a-d a=G_{\text {Viz. }} .\left\{\begin{array}{l}b=40 \quad \cdot c=75 \mathbf{I}\end{array}\right.$ Put $r+e=a \quad . \quad$ iz. $\left\{\begin{array}{l}d=9000 \cdot G=90000\end{array}\right.$ Then $\left\{\begin{array}{l}r+4 r r r e+6 r r e e=a^{4} \\ b r r r+3 b r r e+3 b r e e=b a a a \\ c r r+2 c r e+c e e=c a a \\ -d r-d e=-d a\end{array}\right\}=G=90000$ Let $r=10$

Then

Chap. 4. . Of weiolving probtems.


That is, $35100+220200+255^{10 e}=90000$
Hence it will be $220200+255$ ree $=54900$
Confequently, $8,63 e+e \ell=21,5^{2}=D$

$$
\text { And } \frac{D}{8,63+e}=e
$$

Operation, 8,63$) \quad \dot{21}, 5_{2}(2,1=e$
$+e=2,1 \quad 20$

1. Divifor $=10 \quad$ 1,52 $\quad$ Firft $r=10$
2. Divifor $=10,7 \quad 1,07 \quad+e=2, r$

45 \&c. $r+e=12, \mathrm{r}=r$ for a fecond Operation, which being involv'd, and multiply'd into the Co-eficients, as before, will produce thefe Numbers:


Viz. $9335^{2,2} 28 \mathrm{I}-33829,64 e+308 \mathrm{r}, 46 e \mathrm{e}=90000$
Here, becaufe $93352,23^{81}>90000$ therefore $12,1>a$, and therefore it mult be made $r-e=a$, which will produce the fame Numbers, only all the fecond Signs muft be changed.

Thus, $93352,23^{81}-33829,64 e+308 \mathrm{r}, 46 \mathrm{ce}=90000 \mathrm{from}$ whenee will arife this $\mathbb{E}$ quation:

$$
+33829,64 e-3081,46 e e=3352,238 \mathbf{r}
$$

Confequently, $10,9784 e-e e=1,0878733^{2}=D$ Operation, 10,9784 ) 1,08787332 (0,0999 $=e$

| $-e=, 0999$ | $\frac{9792}{108673}$ |
| :--- | :--- |
| 1. Divifor $\frac{10,88}{10,879}$ | Laft $r=12, \mathbf{1}$ |
| 2. Divifor $\frac{97911}{10,8785}$ | $-e=0,0999$ |
| 3. Divifor | $-\overline{1076232}$ |
| $\frac{979065}{\& c}$ | $r-e=12,0001=e$ |

> PR O B L E M XX.

In the Oblique-angled Triangle CAD, there is given the Side $A D$, and the Sum of the Sides $A C+C D$; alfo within the Triangle is given
the Line $A B$ perpendicular to the Side $C A$; thence to find the Side $C A$, \&ic.


This Equation being brought out of the Fractions, and into Numbers, will become - $2018 a^{4}+125409 a^{3}-2464230,25 a^{2}$ $+35458307 a=274183922,25$; which being divided by 2018, the Co-efficient of the highelt Power of $a$, will be - $a^{4}+62,145$ $6 a^{3}-1221,12.5 a^{2}+17575,9697 a=135869,138875, \& c$.

And from hence the Value of $a$ may be found, as in the laft Problem, due Regard being had to the Signs of every Term.

This Work of reducing, or preparing 压quations for a Solution by Divifion, hath always been taught both by ancient and modern Writers of Algebra, as a Work fo neceffary to be done, that they do not fo much as give a Hint at the Solution of any adfected Equation without it.

Now it very often happens, that, in dividing all the Terms of an Equation, fome of their Quotients will not only run into a long Series, but alfo into imperfect Fractions (as in this Equation above) which renders the Solution both tedious and imperfect.

To remedy that Imperfection, I fhall here fhew how this Equation (and confequently any other) may be refolv' $\dot{d}$ without fuch Divifion or Reduction.

Let $b=2018 . \quad c=125409 . \quad d=2464230,25$
$f=35468307$. And $G=274183922,25$
Then the precedent Equation will itand thus :
$-b a a a a+c a a a-d a a+f a=G$
Put $r+e=a$ as before.

This is plain and eafily conceived. The next Thing will be, how to eftimate the firft Value of $r$; and, to perform that, let $G$ be divided by $b$, only fo far as to determine how many Places of whole Numbers there will be in the Quotient; confequently, how many Points there muft be (according to the Height of the Equation.)

$$
\begin{aligned}
&\text { Thus } b=2018) G=274183922,25(130000 \\
& \frac{2018}{7238, ~ \& c c .}
\end{aligned}
$$

Now from hence one may as eafily guefs at the Value of $r$, as if all the Terms had been divided. That is, I fuppofe $r=10$, which being involved, \&c. as the Letters above direct, will be

$$
\begin{array}{ll}
X x & -20880000
\end{array}
$$

$$
\left.\begin{array}{r}
-20880000-8072000 e-1210800 e e \\
+125409000+37622700 e+3762270 e \varepsilon \\
+246423025-49284605 e-2464230,25 e e \\
+354683070+35468307 e
\end{array}\right\}=G
$$

Viz. $213489045+15734402 e+87239,75^{e e}=2741839$ \& ${ }^{\text {é }}$.
Hence ${ }_{15734402 e}+87239,75 e e=60694877,25$

$$
\begin{gathered}
\text { Conjequently; } 180,3 e+c e=695,72=D \\
\text { And } \frac{D}{180,3+e}=e
\end{gathered}
$$

Operation. $\quad 180,3) \quad 695,72 \quad(3,7=e$

$$
+e=3,7) 549
$$

1. Divifor $=183 \quad 146,72 \quad$ Firft $r=10$
2. Divifor $=184,0 \quad 128,80 \quad+e=3,7$
sc. $\quad r+e=13,7=r$ for a
fecond Operation, with which you may proceed, as in the laft Problem, and fo on to a third Operation, if Occafion require fuch Exactnefs. But this may be fufficient to fhew the Method of refolving any adfeeted Equation, without reducing it; which is not only very exact, but alfo very ready in Practice, as will fully appear in the laft Cbapter of this Part, concerning the Periphery and Area of the Circle, \&cc. wherein you will find a farther Improvement in the Numerical Solution of High Equations than hath hitherto been publifh'd.

## CHAP. V.

 Contents, or $\mathfrak{l r c a}$ 's of Right lin'd Figures.

BEfore I proceed to the following Problems, it may be convenient to acquaint the Learner, that the Superficies or Area of any Figure, whether it be Right-lin'd or Circular, is compos'd or made up of Squares, either greater or lefs, according to the different Meafures by which the Dimenfions of the Figures are taken or meafur'd.

That is, if the Dimenfions are taken in Inches, the Area will be compos'd of fquare Inches; if the Dimenfions are taken in Feet, the Area will be compos'd of fquare Feet; if in Yards, the Area will be fquare Yards; and if the Dimenfions are taken by Poles or Perches ( as in furveying of Land, \&xc.) then the Area will be fquare Perches,

Ch. 5. Practical 1kules about arcais, \&cc.
\&c. Thefe Things being underfood, and the Definitions in the $283^{\text {d }}$ and 284th Pages well confider'd, will help to render the following Rules very eafy.

## PROBLEMI.

To find the Superficial Content, or Area of a \$quate 3 or of any Rigbt-angled Warallrlogramt.
Rule. $\left\{\begin{array}{l}\text { Multiply the Length into its Breadth, and the Product will } \\ \text { be the Area requir'd. (See Lemma I. Page 302.) }\end{array}\right.$
Example. Suppofe the Line $A B=6$ Yards, and the Breadth $A C$ or $B D$ $=3$ rards, then $A B \times A C=6 \times 3$ $=18$ will be the Number of fquare Yards contain'd in the Area of the Pa -
 rallelogram $A B C D$. This is fo evident by the Figure only, that it needs no Demonfration.

## PROBLEMII.

To find the Areo of any Oblique-Triangled Parallelogram, viz. either of a libombus or łajomboides.
Role. $\left\{\begin{array}{l}\text { Multiply the Length into its perpendicular Height (or } \\ \text { Breadth) }\end{array}\right.$ $\{$ Breadth) and the Product will be the Area requir'd.

That is, the Side $A B \times B P=$ the Area of the Rhombus $A B C D$. For if $B P$ be drawn perpendicular to $C D$, and $A G$ be made parallel to $B P$, then will $G C=P D$ and $G P=C D$. Confequently $\triangle A G C=\triangle B P D$, and $\square$ $A B G P=$ Rhombus $A B C D$. But $A B$ $\times B P=\square A B G P$. Therefore $A B \times$
 $B P$, or $C D \times B P=$ the Area of the Rhombus ABCD.

Example. Suppofe the Side $A B=23$ Inches, and the Perpendicular $B P=17,5$ Inches (being the forteft or neareft Diftance between the two Sides, $A B$ and $C D$.) then $A B \times B P=23 \times 17,5$ $=402,5$ fquare Inches, being the Area of the Rhombus required.

The like may be done for any Rhomboides whofe Length and perpendicular Breadib is given.

## PROBLEM III.

To find the Superficial Content, or Area of any plain Triangle.
Every plain Triangle is equal to balf its circumfcribing Parallelogram, (41.e. 1.) which affords the following Rule:

> Rule. $\left\{\begin{array}{l}\text { Multiply the Bafe of the given Triangle into half its perpen- } \\ d \text { i }\end{array}\right.$ dicular Height, or half the Bafe into the whole Perpendicular, and the Product will be the Area.

That is, $B D \times \frac{1}{2} C P$, or $\frac{x}{2} B D \times C P=$ Area of $\triangle B C D$. For $A C=B P, A B=C P$, and $B C$ is common to both $\triangle \triangle$; therefore $\triangle A B C=\triangle B C P$, and for the like Reafons $\triangle C F D$ $=\triangle C P D$. Therefore $\triangle B C P$ $+\triangle C P D=\frac{1}{2} \square A B C D$.
 Confequently $\frac{1}{2} B D \times C P$, or $B D \times \frac{1}{2} C P$ will be the Area of $\triangle B C D$.

Example. Suppofe the Bafe $B D=32$ Inches, and the perpencular Heigbt $C P=14$ Inches.

Then $\frac{1}{2} B D \times C P=16 \times 14=224$. Or $B D \times \frac{1}{2} C P=$ $32 \times 7=224$. Or thus, $32 \times 14=448$. Then 2) $448(224$ $\mp$ the Area of the Triangle $B C D$ in Square Inches.

## PROBLEM IV.

To find the Superficies, or Area of any Trapreium.
Firf, divide the given Traperium into two Triangles, by drawing a Diagonal from one of its acute Angles to the oppofite Angle; and let fall two Perpendicuiars (from the other two Angles) upon the Diagonal, as in the following Figure. Then

> Multiply balf the Diagonal into the Sum of the two PerRule. $\left\{\begin{array}{l}\text { pendiculars, or balf the Sum of the Perpendiculars into the }\end{array}\right.$ Diagonal, and the Product will be the Area.

That is, $\frac{1}{2} A C \times \overline{B P+E D}$. Or $A C \times \frac{1}{2 P+\frac{1}{2} E D=}$ Area of the Trapezium $A B C D$.

For the $\triangle A B C$ is Half its circumfcribing Parallelogram; and the $\triangle A C D$ is alfo Half of its circumfcribing Parallelogram, as hath been prov'd at the laft Problem.

Confequently,

Ch. 5. Practical ねutes about Area's, \&c. 341
Confequently, $\overline{B P+E D} \times \frac{1}{2} A C$, or $\overline{\frac{1}{2} B P+\frac{1}{2} E D} \times A C$ will be the Area of the Trapezium, as above.

Example. Suppofe the Diagonal $A C=33$ Feet, and the Perpendicu$\operatorname{lar} B P=15$ Feet, and the Perpendicular $E D=14$ Feet. Then $B P+E D=29$ Feet, and
 $\overline{B P+E D \times \frac{1}{2}} A C=29 \times 16,5$ $=478,5$. Or $A C \times \overline{\frac{1}{2} B P+\frac{1}{2} E D}=33 \times \frac{29}{2}=478,5$. Or thus, $29 \times 33=957$. Then 2) $957\left(47^{8,5}\right.$ any of thefe Produits are the Area of the Trapezium ABCD.

## PROBLEMV.

To find the Superficial Content or Area of any irregular Polygon, or many-fided Figure, which by fome Authors is call'd a Triangulate, becaufe (as $I$ fuppofe) it muft be divided into Triangles, as in the annexed Figure $A B C D$ $F G$; by which it is evident, that the Sum of the Area's of all thofe Triangles, found as in the laft Problem, \&c. will be the Area of their circumfcribing
 Polygon.

> PROBLEMVI.

To find the Superficies, or Area of any regular Polygon, viz. of
 General RULe. $\left\{\begin{array}{l}\text { Multipl } \begin{array}{l}\text { of the inforib'd Circle, or half the faid Radius into } \\ \text { the Sum of the Sides, and the Product will be the } \\ \text { Area required. }\end{array} \\ \hline\end{array}\right.$ Area required.
That is, $\frac{A B+B D+D E+E F+F G+G H+H K+K A}{2}: \times C P$
$=$ the Area of the annexed Octagon; wherein it is evident, that its Area is compos'd of fo many equal IJofceles Triangles as there are Numbers of Sides in the Polygon, viz. of eight Ifofceles Triangles, whofe Bafes are the Sides of the Octagon, viz. $A B=B D=D E$, \&c. And the Sides of thofe Triangles, $C A, C B, C D, \& \mathrm{c}$. are the Radius's of the circumfcribing Circle; and their perpendicular Heights, viz. PP, is the Radius of the infcrib'd Circle.

But the Area of any one of thofe Triangles is $\frac{x}{2} A B \times C P$ by Problem 3. Confequently the Sum of all their Area's will be $C P$ into balf the Sum of all their Bafes, as above.

This, being equally evident in all regular Polygons whatfoever, makes the Rule general for finding their Area's.

Now, becaufe it is requir'd to bave the Radius of the propos'd Polygon's infcrib'd Circle, I Thall here infert (and demonfirate) the
 Proportions that are between the Sides of feveral regular Polygons and the Radius's both of their inforib'd and circumfcribing Circles; the one will help to delineate or project the Polggon (if Occafion require it) and the other will help to find its Area.

## And Firf, Of an Cquilatrtal Triangle.

The Side of any Equilateral plain Triangle is in Proportion to the Radius of
its $\left\{\begin{array}{l}\text { Circumfcribing Circle, } \\ \text { Infcrib'd Circle } \\ \text { Perpendicular Height, }\end{array}\right\}$ As I:To $\left\{\begin{array}{lll}0,57735027 & \text { \&c. } \\ 0,28867513 & \text { \&c. } \\ 0,86602540 & \text { \&c. }\end{array}\right.$
i. e

$$
\left\{\begin{array}{l}
A B: C D:: \mathbf{1}: 0,57735027 \\
A B: C G:: \mathbf{1}: 0,28867513 \\
A B: A G:: 1: 0,86602540
\end{array}\right.
$$

## \$imonffation.

Let $A B=B D=\mathrm{I}$, then will $B G$ $=G D=0,5$; but $\square A B-\square B G$ $=\square A G$ by Theorem 11. That is, 1 $-0.25=0,75=\square A G$, confequently, $\sqrt{ } 0,75=0,86602540=A G$ :


Then $A G: A B:: A B: A H$, by Theorem 13 , that is, 0,8660254 : $1:: 1: 1,154,0054 \& c .=A H$, then $\frac{1}{2} A H=0,57735027=$ $A C$. Again, $A G: D G:: D G: C G$, that is, $0,8660254: 0,5:=$ $0,5: 0,28867513=C G$. Q. E. D.

Now, by the Help of the Firfl of thefe Proortions, it will be ealy to refolie the following Problem.

Ch．5．Practical 出让es about Area＇s，\＆cc． 343

## PROBLEMVII．

The Side of any Equilateral plain Triangle being given，to find its Area．
Example，Suppofe the Side of the propos＇d Triangle $A B C$ to be 25 Inches，viz．$A B=B C=C A=25$ Firft I ：0，866254：：AB＝25：21，650635 $=B P$ by Theorem 13．Then $A P\left(\right.$ 三 $\frac{1}{2} C$ A）$\times B P=$ the Area of $\triangle A B C$ by Rule to Problem 3，that is， $12,5 \times 21,650635=$ 270,6329 the Area in fquare Inches．

Or this Problem may be otherwife refolv＇$d$ thus：
 Let $b=A P=A C$ ．Then $2 \dot{b}=A B$ ．But $\square A B-\square A P=\square B P$ ．By Theorem II．That is， $4 b b-$ $b b=3^{b b}=\square B P$ ．Confequently，$\sqrt{ } 3^{b b}=B P$ ．Then $b$ $\sqrt{ } 3^{b b}=B P \times \frac{1}{2} A G \cdot v i z \cdot \sqrt{ } 3^{b b b b} \times \sqrt{ } 3=$ the Area of the Triangle．

## Secondly，For a joentagon．

The Side of any Pentagon is in Proportion to the Radius of its $\left\{\begin{array}{l}\text { Circumfcribing Circle，} \\ \text { Infcrib＇d Circle，} \\ \text { Perpendicular Height，}\end{array}\right\}$ As I ：To $\left\{\begin{array}{l}0,85065080 \\ 0,68819096 \\ 0 \text { \＆c．} \\ 1,53884 \mathrm{c} . \\ \mathrm{I} . \\ \text { \＆ic．}\end{array}\right.$

$$
V_{i z .}\left\{\begin{array}{l}
A B: A C:: \mathbf{1}: 0,85065080 \\
A B: C H:: \mathbf{1}: 0,68819096 \\
A B: A H:: \mathbf{I}: \mathbf{1}, 53884176
\end{array}\right.
$$

## Demonuraticu．

Let $A B=1$ ．And draw the $D i$－ agonals $A D, A F$ ，and $D G$ ，which will be equal to one another．Then will $A G \times D F+A D \times G F=A F \times D G$ by Theoren 19．Confequently，$A G \times$

$D F=A F \times D G:-A D \times G F$ ，that is，$\square A B=\square A D:-$ $A D \times G F=1$（becaufe $A B=A G=D F$ ，and $A D=A F=D G$ ） hence it will be $A D=1,61803398$ ，then $\square A D-\square D H=$ $\square A H$ by Theor．in．But $D H=\frac{1}{2} A B$ ，therefore $\sqrt{\square A D-\square A B}$ $=A H=1.5388417$ ．Again，$A H: A D:: A D: A X=2 A C$ ． For $\triangle A H D$ and $\triangle A D X$ are alike．

Ergo $\frac{\square A D}{A H}=2 A G=1,70130161$. Hence $A C=0,85065080$ But $A H-A C=C H=0,688$ гgog6, \&c. $\quad$ Q. E. D.

From hence it will be eafy to refolve the following Problem.

## PROBLEM VIII.

The Side of any regular Pentagon being given, to find its Area.
Example. Suppose the given Side to be 15 Inches long, then it will be, as $1: 1,53884176:: 15: 22,0826264$ the perpendicular Height; and by the general Rule 22,0826264× $\frac{15}{2}=165,619698$ the Area requir'd.

## Thirdly, For an $\mathbb{D}$ dagon.

The Side of an g regular Octagon is in Proportion to the Radius of its $\left\{\begin{array}{l}\text { Circhimfcribing Circle, As I : to } 1,30656296, \xi^{\circ} c . \\ \text { In As ibid Circle, }\end{array}\right.$ As I : to I,


Viz. $\left\{\begin{array}{l}B A: C A:: 1: 1,30656296 \\ B A: C P:: 1: 1,20710678\end{array}\right.$

## Demunfration.

Draw the Right Line $D B$, and from the Point $B$ let fall the Perpendicular $B x$ upon the Diameter DA.

Then will $\triangle D B A$ and $\triangle D \approx B$ be alike, by Theorem 10 and 12 .
Let $\left\{\begin{array}{l}b=B A=1: a=C A \\ e=B D, \text { and } y=B x\end{array}\right.$


Ch. 5. Practical Rules about Area'g, \&c. 345

| 5, 6 |  | $4 b b a a-2 a^{4}=b^{4}$. Or $2 a^{4}-4^{4 b b a a}=-b^{4}$ |
| :---: | :---: | :---: |
|  | 8 | $a a a a-2 b b a a=-\frac{1}{2} b^{4}$ |
| $8 C \square$ | 9 | $a^{4}-2 b b a a+b^{4}=b^{4}-\frac{1}{2} b^{4}=\frac{1}{2} b^{4}$ |
| $9 \omega^{2}$ | 10 | $a a-b b=\sqrt{\frac{1}{2}} b^{4}$ |
| $\mathbf{1} 0+b b$ | 11 | $a a=b b+\sqrt{\frac{1}{2}} b^{+}$ |
| $11 \mathrm{wa}^{2}$ | 12 | $a=\sqrt{ }: b b+\sqrt{1} \frac{1}{2} b^{4}=\mathbf{1}, 30656296,8 \mathrm{c} .=C A$ |
| Then | 13 | $a a-\frac{1}{4} b b=\square C P$, viz. $\square C H-\square H P=\square C P$ |
| 13 ms |  | $\sqrt{a a-\frac{1}{4} b b}=1,20710678,8 \mathrm{c} .=C P$. |

From hence 'twill be eafy to find the Area of any Octagon.

## PROBLEM IX.

The Side of any regular Octagon being given, to find its Area:
Example. Suppofe the Side given to be 12 Inches long; Firff, as $1: 1,20710678:: 12: 14,48528136=$ the Radius of its infrrib'd Circle; then $12 \times 4=48$ is half the Sum of its Sides, and $48 \times 14,48528136=695,2935$ the Area required.

Fourtbly, For a $\ddagger$ Decagon.
The Side of any regular Decagon (viz. a Polygon of ten equal Sides) is in Proportion to the Radius of
Its $\left\{\begin{array}{l}\text { Circumfribing Circle, as } \mathrm{I}: \text { to } 1,61803398, ~ \& c . ~\end{array}\right.$ Infcrib'd Circle as I : to 1,53884176 , \&cc.
Vix. $\left\{\begin{array}{l}B A: C A:: \mathbf{1}: \mathbf{1}, 61803398\end{array}\right.$ $B A: C P:: 1: 1,53884176$ EDemonifration.
Let $\left\{\begin{array}{l}b=B A=\mathbf{1} \cdot a=C A \\ c=D B, \text { and } y=B x\end{array}\right.$


## PROBLEM X．

The Side of any regular Decagon being given，to find its Area：
Example．Let the given Side be 14 Inches long；then，as $\mathbf{1}: \mathbf{1 , 5 3 8 8 4 1 7 6 : : 1 4 : 2 1 , 5 4 3 7 8 4 = \text { the Radius of the infcrib＇d }}$ Circle；and $14 \times 5=70$ is half the Sum of its Sides．Laftly， $21,543784 \times 70=1508,06488$ the Area requir＇d．

## Fiftbly，For a $\ddagger$ Doccagan．

The Side of any regular Dodecagon（viz．a Polygon of twelve equal Sides）is in Proportion to the Radius of

$$
\text { Its }\left\{\begin{array}{l}
\text { Circumfcribing Circlés } \\
\text { Infcrib'd Circle } 1: \text { to } 1,93185165, \& \mathrm{c} . \\
\text { Is } \mathrm{I}: \text { to } 1,86632012, \text { \&c. }
\end{array}\right.
$$

Viz．$\left\{\begin{array}{l}B A: C A:: 1,03185165 \\ B A: C P:: 1,86632012\end{array}\right.$

## Demonttration．

Let $\bar{b}=B A=\mathbf{1} \cdot a=C A$ as before And $e=x A$ ；then $a-e=C x$


Ch. 6. Of the ©irclés foeriphery, \&c.

## Confectary.

Hence if the Side of any regular Dodecagon be given, the Radius of its infcrib'd Circle may be eafily obtain'd, and thence the Area found ; as in the laft Problem.

The Work of the 'foregoing Polygons, being well confider'd, will help the young Geometer to raife the like Proportions for others, if his Curiofity requires them : And not only fo, but they will alfo help to form a true Idea of a Circle's Periphery and Area, according to the Method which I fhall lay down in the next Chapter for finding them both.

## CHAP. VI.

A new and eafy Method of finding the ©ircle's periphery and Grea to any affign'd Exactnefs (or Number of Figures) by one Equation only. Alfo a new and facile Way of making Natural Sines and Tiangents.

LET us fuppofe (what is very eafy to conceive) the Circle's Area to be compos'd or made up of a vaft Number of plain IJofceles Triangles, having their acuteft Angles all meeting in the Circle's Center. And let us imagine the Bafes of thofe Triangles fo very fmall, that their Sides and their Perpendicular Heights, viz, the Radius's of their circumfcrib'd and infcrib'd Circles (vide Problem 6.) may become fo very near in Length to each other, as that they may be taken one for another without any fenfible Error : Then will the Peripheries of their circumfcribing and infcrib'd Circles become (altho' not co-incident, yet) fo very near to each osher, as that either of them may be indifferently taken for one and the fame Circle,

But how to find out the Sides of a Polygon (viz. the Bafes of thofe Ifofceles Triangles) to fuch a convenient Smallnefs as may be neceffary to determine and fettle the Proportion betwixt a Circle's Diameter and its Periphery (to any aflgn'd ExaEIne/s) hath hitherto been a Work which requir'd great Care and much Time in its Performance; as may eafily be conceived from the Nature of the Method us'd by all thofe who have made any confiderable Progrefs in it, viz. Arcbimedes, Snellius, Hugenius, Maetius, Van Culen, \&c. Thefe proceeded with the bifecting of an Arch, and found the Value of its Cbord to a convenient Number of Figures
at every fingle Bifection, repeating their Operations until they had approach'd to the Chord defign'd.

And this Method is made Choice of by the learned Dr. Wallis in his Treatife of Algebra; wherein, after he hath given us a large Account of the different Enquiries made by feveral (very eminent in Mathematical Sciences) in order to find out fome eafier and more expeditious Way of approaching to the Circle's Periphery, as in Chap. 82, 84, 85, 86, and feveral other Places, he comes to this Refult, (Page 321.)
"، 'T is true, faith he, we might in like Manner proceed by con" tinual Trifection, Quinquifection, or other Section, if we had " for thefe as convenient Methods of Operation as we have for "Bifection: But becaufe Euclid fhews how to bifect an Arch * Geometrically, but not to trifect, $\xi^{\circ} c$. and the one may be done * (Algebraically) by refolving a Quadratick Æquation, but not "t thofe other, without Equations of a higher Compofition, I " therefore make Choice of a continual Bifection, $E^{\circ} c$."

And then he lays down thefe following Canons:


How tedious and troublefome the Work of thefe complicated Extractions is, I leave to the Confideration of thofe, who either have had Experience therein, or out of Curiofity will give themfelves the Trouble of making Trial.

Again, in Page 347, the Doctor inferts a particular Method propofed by Libnitius, publih'd in the AETa Eruditorum at Leipfick, for the Month of February 1682, in order to find the Circle's Area, and confequently its Periphery, which is this:

As I : to $\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{7}+\frac{1}{3}-\frac{3}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{15}, \& \mathrm{c}_{0}$. infinitely : $:$ fo is the Square of the Diameter to the Circle's Area. But this convergeth fo very flowly, that it is not worth the Time to purfue it.

I Shail here propofe a new Method of my own, whereby the Circle's Peripbery, and confequently its Area, may be obtain'd infinite-
infinitely near the Truth, with much greater Eafe and Expedition than either that of Bijection, or that of Libnitius, as above, or any other Method that I have yet feen; it being perform'd by refolving only one 灰quation, deduced by an eafy Procefs from the Property of a Circle, (known to every Cooper) which is this :

The Radius of every Circle is equal to the Chord of one fixth Part of its Periphery. That is, $A D=D H=H G$, the Cbords of one third Part of the Semicircle, are each equal to $A F$ its Radius. Then if the Arch $A D$ be trifected, it
will be $A B=B Z=Z D$.
Let $\left\{\begin{array}{l}R=A F=\mathbf{1} \\ c=A D=\mathbf{r} \\ a=A B . \text { Quære } a .\end{array}\right.$

| Then | 1 | $R: a:: a: \frac{a a}{R}=e_{e} A$ |
| :---: | :---: | :---: |
| And | 2 | $R: a:: R-\frac{a a}{R}: c-2 a$ |
| That is, For | 3 | $F B: B Z:: F e: e x=A D-2 a$ $\triangle A F B$, and $\triangle B A e$, are alike. And $A B=A e=D x$, \&ic. |
| $2 \quad \because$ | 4 | $R c-2 R a=R a-\frac{a a a}{R}$ |
| $4 \times 8 \mathrm{c}$. | 5 | $3 R^{2} a-a a a=R R c$. That is, $3 a-a a=1$ <br> Here $a=$ the Chord of $\frac{1}{15}$ Part of the Circle. <br> For $\frac{1}{3}$ of $\frac{1}{8}=\frac{1}{18}$ |

Next, To trifect the Arch $A B$.


Again, To trifect the Arch whereof y is the Chord.

$$
\begin{array}{l|l|l}
\text { Let } & \begin{array}{l}
\text { I } \\
1
\end{array} & a^{3}=y \\
1 & 2 & 27 a^{3}-27 a^{5}+9 a^{7}-a^{9}=y^{3} \\
1 & 24 a^{5}-405 a^{7}+270 a^{9}-90 a^{11}+15 a^{13}-a^{15}=y^{5}
\end{array}
$$



Proceeding on in this Method of continually trifecting the Arch of every new Chord, and ftill connecting the produced $\not$ equations into one, as in the two laf Trifections, 'twill not be difficult to obtain the Chord of any affign'd Arch, how fmall foever it be.

Now, in order to facilitate the Work of raifing thefe Equations to any confiderable Height, 'twill be convenient to add a few ufeful Obfervations concerning their Nature, and of fuch Contractions as may be fafely made in them; which, being well underftood, will render the Work very eafy.

1. I bave obferv'd, that every Trifection will gain or advance one Figure in the Circle's Periphery, but no more. Therefore So many Places of Figures as are at firft defign'd to be perfect in the Periphery, fo many Trifections muft be repeated to raife an Equation that will produce a Chord anfwerable to that Defign.
2. I have alfo found, that all the fuperior Powers (of a) whofe Indices are greater than the Number of Trifections, (viz. whofe Indices are greater than the Number of defign'd Figures) may be wholly rejccted as infignificant.
3. When once the Number of Trifections, and thence the higheft Power (of a) is determined, the third Procefs (vis. the third Trifection) may be made a fix'd or confant Canon; for by it, and Multiplication only, all the fucceeding Trifections (bow many foever they are). may be compleated without repeating the feveral Involutions.
4. In raifing and collecting the Co-efficients of the Several Powers (of a) 'twill be fufficient to retain only So many fignificant Figures (at $a^{3}$ ) as there is defigned to be Places of Figures in the Periphery (or at moft but two more) and every fucceeding juperior Power may be allow'd to decreafe two Places of fignificant Figures: But herein great Care mu $\boldsymbol{t}$ be taken to fupply the Places, of thofe Figures that are omitted, with Cyphers, that fo the whole and exact Number of Places may be truly adjufted; otherwife all the Work will be erroneous.

Now the Number of thofe fupplying Cyphers may be very conveniently denoted by Figures placed within a Parenthefis, thus: 576 (8) $a^{3}$, may Jignify $57600000000 a^{3}$, as in the following Aquations. The like may be done with Decimal Parts, thus: $(, 7) 658$ may fignify $, 0000000658,8 \mathrm{cc}$. which will be found very ufeful in the Solution of thefe and the like Equations.

The aforefaid Contractions may be fafely made, becaufe both the fuperior Powers of $a$, which are rejected; as alfo thofe Numbers that are omitted in the Co-efficients (and fupply'd with Cyphers) would produce Figures fo very remote from Unity, as that they would not affect the Chord defign'd ; that is, they would not affect the Chord in that Place wherein the defign'd Periphery is concerned; as will in Part appear in the following Example.

If thefe Directions be carefully minded, 'twill be eafy to raife an Equation that will produce the Side of a regular Polygon, whofe Number of Sides fhall be vaftly numerous, confequently infinitely fmall : But, I prefume, 'twill be fufficient for an Example to find the Side of a Polygon confifting of 258280326 equal Sides; that is, if I find the Chord of $\frac{1}{258280326}$ Part of the Circle's Periphery, and that requires but fixteen Irijections, which being order'd, as before directed, will produce this IEquation.
$\left\{\begin{array}{l}43046721 a-332360179486968612(4) a^{3} \\ +769837653199714(20) a^{5}-8491218532841\left(35 a^{7}\right. \\ +54633331143(50) a^{9}-230083348(66) a^{1!} \\ +6830988(79) a^{13}-15072(94) a^{15}\end{array}\right\}=\mathbb{}$
Here the Value of $a$ will have ${ }_{23}$ Places of Figures true ; that is, the Sides of the infcrib'd and circumfcrib'd Polygons will be exactly the fame to 23 Places of Decimal Parts, but no farther; all which may be eafily obtain'd at two Operations. And for the firft, 'twilk be fufficient to take only three Terms of the Equation, which will admit of being yet farther contracted, thus:

$$
\text { Let }\left\{\begin{array}{l}
43046721 a-3323601794(12) a^{3} \\
+76983765(27) a^{5}
\end{array}\right\}=1
$$

And let $r+e=a$; then rejecting all the Powers of $e$, that arife by Involution above eee,

It will be $r^{3}+3^{r r e}+3 r e e+e e e=a a a$

$$
\text { And } r^{5}+5 r^{4} e+10 r^{3} e e+10 \text { rreee }=a^{5}
$$

Then the firft fingle Value of $r$ may be thus found :

$$
43046721) 1,00000000(, 00000002=r
$$

This ,00000002 = $r$ being duly involv'd, and its Powers multiply'd into their refpective Cio-eficients, will produce

$$
+, 86093441+43046721 e
$$

$$
+, 00024635+61587 e+6159(9) e e+308(18) e c e)
$$

viz.,83459196+39119986e-193257(9)ee-3016(18)eee二1 Hence $39^{119986 e}$ - $193257(9)$ ee- 3016 (18)ee $=0,16540804$

All the Terms of this laft Fquation being divided by 193257(9) the Co-efficient of ee, it will then become , $0000002024 e-e e-, 156(5) e e e=, 0000000000000008558968=D$

Confequently, $\left\{\frac{D+156(5) \text { eee }}{, 0000002024-e}=e\right.$

## Operation.

, 0000002024 ) ,0000000000000008558968 (,000000004 =e

- e, $0000000043:+, 0000000000000000009984=156(5)$ eee
${ }^{1}$ Di. ,000000198) ,0000000000000008;68952 (,000000004327

[^5]Firft $r=, 00000002$
$+e=, 000000004327$
$r+e=, 000000024327=a$.
$\frac{792}{6489}$
$\frac{5943}{5465}$
$\frac{3962}{\xi \%}$.

Or rather new $r$ for a fecond Operation.

Now, if this firf Value of $a=, 000000024327$ were not continued to more Places of Figures by a fecond Operation, but only multiply'd into the Number of Chords, viz. ,000000024327 $\times 258280326$ $=6,28318539$, \& cc. the Periphery of that Circle whofe Diameter is 2, nearer than either Archimedes, or Mœtius's Proportion: For

Ch. 6. Of the © ircle's 10criphery, \&cc.
Archimedes makes it 6,285714, \&ic. viz. As 7 to 22. And Mœtius makes it 6,28318584 , \&uc. viz. As II 3 to 355 .

But if the whole Equation before propos'd be now taken, and we proceed to a fecond Operation, the Value of $a$ may be increas'd with twelve Places of Figures more, and thofe may be obtain'd by plain Divifion only.

Thus, let $r+e=a$, as before, and let all the Powers of $e$ be now rejected as infignificant ;

Then will $\left\{\begin{array}{l}r+e=a \\ r^{3}+r^{r^{2} e} \equiv a^{3} \\ r^{5}+5^{r^{4} e}=a^{5} \\ r^{7}+7 r^{6} e a^{7}\end{array}\right\}$ and $\left\{\begin{array}{l}r^{9}+r^{8} e=a^{9} \\ r^{11}+11 r^{10} e a^{11} \\ r^{13}+1 r^{r^{12} e} a^{13} \\ r^{15}+15 r^{14} e a^{15}\end{array}\right.$
The feveral Powers of $r=, 000000024327$ being rais'd, and multiply'd into their refpective Co-efficients, will produce thefe following Numbers:

$$
\left.\begin{array}{rr}
+1,047197581767 & + \\
\pm, 047849196598394865- & 5900751 e \\
\pm, 000655906484595355+ & 134810 e \\
\pm, 000004281440413375- & 1232 e \\
\pm, 000000016302517803+ & 6 e \\
\pm, 000000000040631167+ & \text { oe } \\
\pm, 000000000000071388+ & \text { oe } \\
-, 000000000000000093- & \text { oc }
\end{array}\right\}=1
$$

```
    Viz. \(\quad 1,000000026474745106+37279554^{e}=1\)
    Hence \(37279554 e=-, 000000026474745106=D:\) Or
rather \(-37279554^{e}=, 000000026474745106=D\)
    Confequently, \(\left\{\frac{D}{37279554}=-e\right.\)
```


## Operation.

$$
\begin{gathered}
\frac{260956878}{37279554), 00000002647474106((, 15) 710167967}=- \\
\frac{37279554}{62617660} \\
\frac{37279554}{8 c_{2}} \\
Z_{2}
\end{gathered}
$$

Laft $r=, 000000024327$
$-e=, 000000000000000710167967$
$r-e=, 000000024326999289832033=a$ the Chord or Side of the Polygon required.

The next Work will be to examine how many Places of thefe Figures will hold true to the Circle's Periphery: In order to that, let $a$ be reprefented by the Chord $\mathrm{B} b$, in the annexed Scheme; and let $B x=x b$. Then will $B x={ }_{2}^{1} a=(, 7) 121634996449160165$ and $\square B C-\square B x=\square C x$. Let the Radius $B C=\mathbf{I}$ as before. Then will the $\sqrt{\square B C-\square B x}=C x$ =, ب999999999999999, \& c. $\left.\begin{array}{l}\text { But } C x: x B:: C A: A D \\ \text { or } C x: B b:: C A: D d\end{array}\right\}$ per Fig. Ergo Dd $=(, 7) 243269992898320354$ the Side of the Circumfcribing Polygon. Then will $a \times 258280326$ be the $P c$ -
 rimeter of the Infcrib'd Polygon. And Dd $\times 258280326$ will be the Perimeter of the Circumfribing Polygon. That is, $6,2831853071795859=$ the Perimeter of the Infrrib'd Polygon. And, $6,2831853071795865=$ the Perimeter of the Circumforib'd Polygon.

Hence 'tis evident, that the Circle's Periphery, whore Diameter is 2 , may be concluded 6,2831853071795864 true, becaufe the Perimeters of the infcrib'd and circumfcrib'd Polygons are fo far very near being Co-incident, or the fame.
'Tis poffible there may be fome who will think this is tedious and troublefome Work; but if thofe pleafe to confider, that, if this Periphery were to be found by the aforefaid Method of Bifection, it would require thefe following Extractions :
$V$ ix. $\left\{\begin{array}{l}\sqrt{ }: 2-\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2 \\ +\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2 \\ +\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2 \\ +\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{ }: 3 \text { multi- } \\ \text { ply'd into } 402809984 .\end{array}\right.$
Here the firft Root (viz. $\sqrt{ } 3$ ) muft be extracted at leaft to one bundred and two Places of Figures. The fecond Root

Ch. 6. Of the Circle's periphery, \&c.
(viz. $\sqrt{ }: 2+\sqrt{3}$ ) muft have 99 Places of Figures in it. The third Root (viz. $\sqrt{ }: 2+\sqrt{ }: 2+\sqrt{3}$ ) muft bave 96 Places in it, \&cc. every Extraction being allow'd to decreafe three Places, that fo the laft Root (viz. the Cbord fought) may confift of 24 Places of Figures, as above.

I fay, whoever duly confiders the Trouble of thefe fo often repeated Extractions will, I prefume, be pleas'd with what I have done. For truly, when I confider the great Time and Care required in them, I cannot but admire at the Patience of the laborious Van Culen, who proceeded that Way until he had found the Circle's Periphery to Thirty- $\hat{2} x$ Places of Figures, to wit, 6,28318530717958647692528676655900576 . Thefe Numbers are faid to be engraven upon his Tomb-Stone in St. Peter's Church in Leyden, for a Memorial of fo great a Work.

Having thus obtain'd the Circle's Periphery, its Arch may eafily be found (to the fame Number of Figures) by Probiem 6. That is, if Half the Periphery of any Circle be multiply'd into Half its Diameter, the Product will be that Circle's Area, as will appear farther on. Therefore 3,141592653589793 will be the Area of the Circle whofe Diameter is 2.

Thus I have fhew'd the young Geometer how to find the Circle's Periphery and Area to what Exactnefs he pleafes to approach; for precifely true it cannot be found, notwithftanding the late Pretenfions of a certain Frenchman who hath publifhed to the Worid (in the Works of the Learned) that after twenty-five Years Study he had found the Quadrature of the Circle: But if he had perus'd the 83 d Cbapter of Dr. Wallis's Algebra, he might there have feen his Error, viz. the Impofibility of what he pretended to; for it is as impoffible to fquare the Circle (that is, to find its true Area) as it is to find the Root of a Surd Number.

Note, What I have here propos'd and done by the Trifection of an Arch, may as eafily and much more fpeedily be perform'd by Quinquefection or Septifection, $\mathcal{E}^{\circ}$. But hecaufe the Scheme for Trifection is more fimple, and may be eafier underftood by a Learner than thofe of the other Sections (of which fee my Compendium of Algebra, Pages 76 and 79) I have for that Reafon made Choice of Trifection.

As to the Proportion of one Circle to another, and of the Circle to the Ellip/is, \&rc. thofe fhall be fully fhew'd when we come to the Fifth Part.

Before I conclude this Part, I fhall make fome Ufe or Application of the above-found Periphery, in finding the Quantity of Angles, which is done by the Help of Right-lines, call'd Sines and Tangents, the Length whereof are calculated to every Degree and Minute of a Quadrant, by much Labour. But I fhall here fhew how to find the natural Sine (and confequently the natural Tangent) of any propos'd Arch or Angle, by two Aquations, without the Help of any precedent Sine, as ufual; which I did fome Years ago communicate to the ingenious Mr. Fofeph Ralphfon, and he fo well approv'd of them as to make them the 20 th and 21 If Problems in the fecond Edition of his Analy $\sqrt{2 s}$ Equationum Univer $\int$ alis.

And becaure, in finding the Quantity of Angles, every Circle is fuppos'd to be divided into 360 equal Parts, call'd Degrees; every Degree is fubdivided into 60 Parts, call'd Minutes; and every Minute into to Seconds, \&c. (Sce Page 294.)

Therefore 360 ) $6,2831853, \& c$. ( $0,0174532925, \& \mathrm{cc}$. is an Arch of the above-found Periphery, equal to the Arch of one Degree.

And 60) 0,0174532925, \&c. (0,0002908882, \&c. = the Arch of one Tininute.

Then if the given Arch (or Angle) be lefs than 45 Degrces, reduce it into Minutes, and multiply thofe Minutes into this conftant Nuitiplicator, viz. 0,0002908882 calling the Product p. And for the Sine fought put $a$. Then it will be -aaaa $+12 p a a a-195 a$ $-36 p p a a+240 p a=45 p p$.

## Example.

Let it be required to find the Sine of $19^{\circ} \cdot 13^{\prime}=1153^{\prime}$. Here $0,0002908882 \times 1153=0,335394094^{6}=p$. And $-a^{4}+$ $4,024729 a^{3}-199,049611 a a+80,494583 a=5,06201394$. Let $r+e=a$
Then $\left\{\begin{array}{l}r r+2 r e+e e=a a \\ r r r+3 r r e+e e=a a a \\ r r r+4 r r r e+6 r r e e=a a a a\end{array}\right.$
Note, In this Cafe the firft r may always be taken equal to the firft Figure in the Product $=\mathrm{p}$. Viz. here $\mathrm{r}=0,3$ which being involved as its Powers direct, and thofe Powers multiply'd into the refpective Co-efficients of the Equation; it will be

$$
\left\{\begin{array}{l}
+24,1483+80,49 e \\
17,9144-119,43 e-199,05 e e \\
+0,1086+1,08 e+30,62 e e \\
-0,0081-0,11 e-0,54 e e
\end{array}\right\}=5,06201394
$$

$$
\text { Viz. 6,3344-37,97e-135,97ee }=5,06201
$$

Ch. 6. Of the ©ircle's loeriphery, \&c.
Hence $37,97 e e+195,97 e e=1,27239$
And $0,123^{e}+e e=0,00649^{2}=D$
Theorem $\left\{\frac{D}{, 193+e}=e\right.$
Operation. 0,193 ) $0,006492(0,029=e$
$+e=, 029$

1. Divifor $\frac{42}{, 21}$
2. Divifor $\frac{422}{2292}$
1998

Firft $r=0,3$

$$
+e=0,029
$$

$r+e=0,329=r$ for a fecond Operation.
Which being involv'd and multiply'd, \&c. as before, will produce thefe Numbers:
$+26,48271781+80,49458 e$
-21,54532894-130,97464e-199,0496ee
$+0,1433257^{8}+1,30692 e+3,9724 e e$

- 0,01171611 - 0,14244e - 0,6494ee

Viz. 5,0689,854-49,31558e-195,7266ee $=5,06201394$
Hence $49,31558 e+195,7266 e e=, 0069846$; which being divided by 195,7266 the Co-efficient of ee, will become, 251966 $+e \varepsilon=, 0000356854=D$

$$
\text { Then }\left\{\frac{D}{, 2519^{6}+e}=e\right.
$$

Operation. 0,25106 ), $0000356854(0,0001415=0$

| 1. Divifor2. <br> 2. Divifor <br> 0,2520 <br> 0,25210 | $\frac{2520}{104854}$ |
| ---: | :--- |
|  | $\frac{100840}{40140}$ |
| Laft $r$ | $=0,329$ |
| $+e$ | $=0,0001415$ |

$r+e=a=0,3291415$ being the natural Sine of $90^{\circ}$. $13^{\prime}$. As was required.

Thus you may find the Right Sine of any Arch or Angle lefs than 45 Degrees.

But, if the given Arch be greater than 45 Degrees, you muft take its Complement to $90^{\circ}$. viz. fubtract it from 90 Degrees, and reduce the Remainder into Minutes, as before. Then multiply the Square of thefe Minutes into this conftant Multiplicator, 0,000000084616 calling their Product $p$, and putting $a=$ the Sine fought, as before. Then will $a^{4}+28 a^{3}+195 a a+36 p a a$ $+108 p a-28 a=196-81 p$.

## Example.

Suppofe it were required to find the Sine of $75^{\circ} \cdot 32^{\prime}$. or (which is the fame Thing) to find the Co--jine of $14^{\circ} \cdot 28^{\circ}$. $=868^{\prime}$, whofe Square $753424 \times 0,000000084615=0,06375172518=p$. Hence the Fqquation in Numbers will be aaaa $+28 a a a+$ 197,295062aa-21,114814a=190,8361102588.

$$
\text { Let } r-e=a \quad \text { And } r=\mathbf{I}
$$

$$
\text { Then }\left\{\begin{array}{l}
r r-2 r e+e e=a a a \\
r r r-3^{r r e}+3^{r e e}=a a a \\
r r r r-4 r r r e+6 r r e e=a a a a
\end{array}\right.
$$

Note, I bere take $r=I$ becaufe the Arch is fo near to $90^{\circ}$. and therefore 1 make it $r-e=a$.
Then $\left\{\begin{array}{l}21,1148+21,11 e+ \\ +197,2956-394,59 e+197,29 e e \\ +28,0000-84,00 e+84,00 e e \\ +1,0000-4,00 e+6,00 e e\end{array}\right\}=190,8361$
Viz, 205,1808-461,48e + 287,29ee =190,836I
Hence $46 \mathrm{I}, 48 e-287,2 \mathrm{gee}=14,3447$
And $1,606 e-c e=, 049930=D$
Theorem $\left\{\frac{D}{1,600-e}=e\right.$
Operation. 1,606$), 04993^{\circ}(0,031=e$

for a fecond Operation; which, being involv'd as before, will produce there following Numbers:

Ch. 6. Of the ©ircte's loeriphery, \&c.

| $20,460254766+21,11481 e$ |
| :--- |
| $+185,252368710-382,35783 e+197,29511 e e$ |
| $+\quad 25,45889852-\quad 7887272 e+81,59600 e$ |
| $+\quad 0,881647759-\quad 3,63941 e+\quad 5,6337 e e$ |

$$
\begin{aligned}
& \text { Viz. } 191,149651515-443,75515^{e}+284,5248 e e \\
& =190,836110259
\end{aligned}
$$

Hence it will be $443,75515 e-284,5248 e e=0,3^{1} 3541256$

$$
\text { And } 1,55963 e-e e=, 0011019821=D
$$

$$
\text { Then }\left\{\frac{D}{1,55963-e}=e\right.
$$

Operation. 1,55963) 0,0011019821 (0,0007068 =e


Laft $r=0,969$
$-e=0,0007068$
$r-e=a=0,968293^{2}$ the Sine of $75^{\circ} \cdot 3^{2}$. as was required.
Having found the Sine and Co-fine of any Arch, the Tangent is ufually found by this Proportion :
$\mathrm{Viz}_{\mathrm{i}} .\left\{\begin{array}{l}\text { As the Co-fine of any Arch : is to the Sine of that } \text { Arch }:: \text { So is, }, ~\end{array}\right.$ $\{$ the Radius: to the Tangent of the Jame Arch.
For fuppofing $B C=B D$ Radius, $A G$ the Sine of the Arch $C D$. Then $B A$ is the Co-fine, and FD the Tangent of the fame Arch. But $B A: C A:: B D: F D$, \&c. Now by this Proportion there is required to be given both the Sine and Co-fine of the Arch, to find the Tangent. 'Tis true, if the Radius, and either the Sine or the Co-fine be given,
 the other may be found, thus, $\sqrt{\square B G-\square C A}=B A$. Or $\sqrt{\square B C-\square B A}=C A$. But, if either the Sine or $C o-$ fine be given, the Tangent may (I prefume) be more eafily found by the following Theorems:

Let $B C=1 . C A=S . B A=x$ and $F D=T$. Then, if $S$ be given, $\tau$ may be found by this

$$
\mathrm{T}_{\text {Heorem }}\left\{\sqrt{ } \frac{S S}{1-S S}=\tau\right.
$$

Or if $x$ be given, $T$ may be found by this

$$
\text { Theorem }\left\{\sqrt{ } \frac{x x}{1-x x}=\mathcal{T}\right.
$$

Let the Sine of $90^{\circ} .13^{\prime}$. (before found) be given, viz. 0,3291415 $=S$, to find $\tau$ the Tangent of the fame Arch. Firft 0,3291415× ,3291415 = 0,108334127 =SS. Again 1 - 0,108334127 $=0,891665873=1-S S$. Then 0,891665873$) 0,108334127$ $(0,1214963253$ and $\sqrt{ } 0,1214963253=0,3485632=T$, the Tangent of $19^{\circ}$. $13^{\prime}$. As was required. And fo you may proceed to find $\mathcal{T}=$ the Tangent, when $x=$ the Co- $\sqrt{2} n e$ is given.

Perbaps it may here be expected, that I fhould have fhew'd and demonfrated (or at leaft have inferted) the Proportions from whence the foregoing 压quations for making Sines were produced; but I have omitted that, as alfo their U/e in computing the Sides and Angles of plain Triangles by the Pen only (viz. without the Help of Tables) for the Subject of my Difcour $\rho_{e}$ hereafter, if Health and Time permit.

In the mean Time, what is here done may fuffice to fhew, that the making of Sines by fuch a laborious and operofe Way, as was formerly ufed, is in a great Meafure overcome; which, I think, I may juftly claim as my own.

# INTRODUCTION 

TO THE

## Mathematicks.

PART IV.

## C H A P. I.

## Definitions of $a \mathbb{C o n e}$, and its $\mathfrak{s e t t o n s}$.

THERE are feveral Definitions given of a Cone: The Learned Dr. Barrow, upon Euclid, hath it thus:
" A Cone ( aith he) is a Figure made when one Side of " a Rectangle Triangle, (viz. one of thofe Sides that contain the " Right Angle) remaining fix'd, the Triangle is turn'd round "f about, 'till it return to the Place from whence it firf moved: " And if the fix'd Right Line be equal to the other whieh con"" taineth the Righe Angle, then the Cone is a Rectangled Cone: "" but if it be leffs, 'is an Obtufe-angled Cone; if greater, an Acute"، angled Cone. The Axis of a Cone is that fix'd Line about which " the Triangle is mov'd : The Bafe of a Cone is the Circle, which " is defrerib'd bv the Right Line mov'd about."
" (Defin. 18, 19, 20. Euclid. II.)
Sir 'Fonas Moor, in his Treatife of Conical Sections (taken out of the Works of Mydorgius) defines it thus:
"If a Line of fuch a Length as thall be needful fall, upon a " Point fix'd above the Plain of.a Circle, fo move about the Cir"cle, until it return to the Point from whence the Motion began, " the Superficies that is made by fuch a Line is call'd a Conical "Superficies; and the folid Figure contain'd within that Super ficies " and the Circle is call'd a Cene. The Point remaining fill is the "Vertex of the Cone, छ'c."

Altho' both thefe Definitions are equally true, and, with a little Confideration, may be pretty eafily underfood; yet I thall here propofe one very different from either of them; and, as I prefume, more plain and intelligible, efpecially to a Learner.

If a Circle defcrib'd upon ftiff Paper (or any other pliable Matter) of what Bignefs you pleafé, be cut into two, three, or more Seciors, either equal or unequal, and one of thofe Sectors be fo roll'd up, as that the Radii may exactly meet each other, it will form a Conical Superficies.

That is, if the Sector HVG be cut out of the Circle, and fo roll'd up as that the Radii $V H$ and $V G$ may juft meet each other in all their Parts, it will form a Cone, and the Center $V$ will become a Solid Point, call'd the VERTE X of the Cone; the Radius VH, being every-where equal, will be the Side of the Cane, and the Arch $H G$ will become a Circle,
 whofe Area is call'd the Cone's Bafe.

A Right Line being fuppos'd to pafs from the Vertex, or Point $V$, to the Center of the Cone's Bafe, as at $C$, that Line (viz. VC) will be the $A X I S$, or perpendicular Height of the Cone.

If a Solid be actually made in fuch a Form, it will be a compleat or perfect Cone; which I hall all along calla Right Cone, becaufe its $A x i s V C$ ftands at $R i g h t$ Angles with the Plain of its Bafe $H G$, and its Sides are every-where equal.

Any Cone, whofe Axis is not at Right Angles with the Plain of its Bafe, may be properly call'd an imperfect Cone, becaufe its Sides are not every-where equal (as in the annexed $F_{t}$ gure.) Now, fuch an imperfect Cone is ufualJy call'd a Scalene; or Oblique Cone.

Any folid Cone may be cut by Plains (which I fhall all along bereafter call Right Lines) into five Sections.

## Sect. I

If a Right Cone be cut directly thro' its Axis, the Plain or Superficies of that Section will be a plain Ifofceles Triangle, as $H V G$ Fig. 2, viz. the Sides ( $H V$ and $V G$ ) of the Cone will be the Sides of the Triangle, the Diameter ( $H G$ ) of the Cone's Bafe will be the Bafe of the Triangle, and (VC) its Axis will be the perpendicular Height of the Triangle.

Seci. 2.
If a Right Cone be cut (any where) off by a Right-line parallel to its Bafe, as $h g$ (it will be eafy to conceive, that) the Plain of that Section will be a Circle, becaufe the Cone's Bafe is fuch: wherein one Thing ought to be clearly underfood, which may be laid down as a Lemma, to demonftrate the Properties of the following Sections.
$\left.\begin{array}{l}\text { Lemma. }\left\{\begin{array}{l}\text { the Rectangle made of the Seg } \\ \text { will be equal to the Rectangle } \\ \text { other Line. (See Theorem } 15 .\end{array}\right. \\ \text { That is, } b a \times g a=b a \times a b \\ \text { And } H A \times G A=B A \times A B\end{array}\right\} \& \mathrm{cc}$. confequently if $b a A=a b$, and if $B A=A B$, then it will be $b a \times g a=\square b a$, and in the Cone's Bafe $H A \times G A=\square$ $B A$.


Sect. 3 .
If a Right Cone be (any where) cut off by a Right Line that cuts both its Sides, but not parallel to its Bafe (as TS in the following Figure) the Plain of that Section will be an Elliphis (vulgarly called an Oval) viz. an oblong or imperfect Circle, which hath feveral Diameters, and two particular Centers. That is,

1. Any Right Line that divides an Ellipfis into two equal Parts is call'd a Diameter; amongft which the longeft and the forteft are particularly difinguifh'd from the reft, as being of moft general Ufe; the other are only applicable to particular Cafes,
2. The longef Diameter (as $T S$ ) is called the Tranfverfe Diameter, or Tranfverfe Axis, being that Right Line which is drawn thro' the Middle of the Ellipfis, and doth fhew or Himit its Length.
3. The fhorteft Diameter, call'd the Conjugate Diameter, is a Right Line that doth, interfect or crofs the Iranfverfe Diameter at Right Angles, in the Middle or common Center of the Ellip/is (as $N n$ ) and doth limit the Ellipfis's Breadth.

4. The two Points, which I call particular Centers of an Ellipfis (for a Reafon which fall be Snew'd farther on) are two Points in the Tranfverfe Diameter, at an equal Diftance each Way from the Conjugate Diameter, and are ufually call'd NODES, FOCI, or burning Points.
5. All Right Lines within the Ellipfis that are parallel to one another, and can be divided into two equal Parts, are called Ordinates with Refpect to that Diameter which divides them : And if they are parallel to the Conjugate, viz. at Right Angles with the Tranfuerfe Diameter, then they are call'd Ordinates rightly apply'd. And thofe two that pafs through the Foci are remarkable above the reft, which, being equal and fituated alike, are call'd both by one Name, viz. Lat us Rectum, or Right Parameter, by which all the other Ordinates are regulated and valued; as will appea. farther on.

## Sect. 4.

If any Cone be cut into two Parts by a Right-line parallel to one of its Sides (as $S A$ in the following Scheme) the Plain of that Section (viz. $S 6 B A B b S$ ) iṣ call'd a Parabola.

1. A Right Line being drawn thro' the Middle of any Parabola (as $S A$ ) is call'd its $A x i s$, or intercepted Diameter.
2. All Right Lines that interfect or cut the Axis at Right Angles ( as $B B$ and $b$ b are fuppos'd to cut or crofs $S A$ ) are call'd Ordinates rigbtly apply'd (as in the Ellipfis) and the greateft Ordinate, as $B B$, which limits the Length of the Parabola's Axis ( $S A$ ) is ufually call'd the Bafe of the Parabola.
3. That Ordinate which paffes thro' the Focus, or burning Point of the Parabola, is called the Latus Rectum, or Right Parameter (as in the Ellip/is) becaufe by it all the other Ordinates are proportion'd, and may be found.
4. The Node, Focus, or burning Point of the Parabola, is a Point in its Axis (but not a Center, as in the Ellipfis) diffant from the Vertex, or Top of the Section, (viz, from $S$ ) juft $\frac{1}{4}$ Part of the Latus Rectum; as fhall be fhewn farther on.

5. All Right Lines drawn within a Parabola parallel to its Axis are call'd Diameters; and every Right Line, that any of thofe Diameters doth bifect or cut into two equal Parts, is faid to be an Ordinate to the Diameter which bifects it.

Sect. 5 .
If a Cone be any where cut by a Right Line, either parallel to its Axis (as $S A$, or otherwife as $x N$ ) fo as the cutting Line being continued thro' one Side of the Cone (as at $S$ or $x$ ) will meet with the other Side of the Cone if it be continued or produced beyond the Vertex $V$, as at $\mathcal{T}$; then the Plain of that Section (viz. the Figure $S$ b $B B b S$ ) is call'd an Hyperbola.

1. A Right Line being drawn thro' the Middle of any Hyperbola, viz. within the Section (as $S A$, or $x N$ ) is call'd the Axis or intercepted Diameter (as in the Parabola) and that Part of it which is continued or produced out of the Section, until it meet with the other Side of the Cone continued, viz. $\mathcal{T} S$ or $\mathcal{T} x$, \&c. is call'd the Tranfuerfe Diameter,
 or Tranfuerfe Axis of the Hyperbola.
2. All Right Lines that are drawn within an Hyperbola, at Right Angles to its Axis, are call'd Ordinates rightly apply'd; as in the Ellippis and Parabola.
3. That
4. That Ordinate which paffes thro' the Focus of the Hyperbola is call'd Latus Rectum, or Rigbt Parameter, for the fame Reafon as in the other Sections.
5. The middle Point of the Tranfuerfe Diameter is call'd the Center of the Hyperbola: from whence may be drawn two Right Lines (out of the Section) call'd Asymptotes, becaufe they will always incline (that is, come nearer and nearer) to both Sides of the IHyperbola, but never meet with (or touch) them, altho' both they and the Sides of the Hyperbola were infinitely extended; as will plainly appear in its proper Place.

Thefe five Sections, viz. the Triangle, Circle, Ellipfis, Parabola, and Hyperbola, are all the Plains that can poffibly be produced from a Cone; but of them, the tbree laft are only called Conick Settions, both by the ancient and modern Geometers.

## Scholium.

Befides the 'foregoing Definitions, it may not be amifs to add, by Way of Obfervation, how one Section may (or rather doth) change or degenerate into another.

An Ellipfis being that Plain of any Section of the Cone which is between the Circle and Parabola, 'twill be eafy to conceive that there may be great Variety of Ellipfes produced from the fame Cone; and when the Section comes to be exactly parallel to one Side of the Cone, then doth the Ellipfis change or degenerate into a Parabola. Now a Parabola, being that Section whofe Plain is always exactly parallel to the Side of the Cone, cannot vary, as the Ellip/is may ; for fo foon as ever it begins to move out of that Poftion (viz. from being parallel to the Cone's Side) it degenerates either into an Ellipfos, or into an Hyperbola: That is, if the Section incline towards the Plain of the Cone's Bafe, it becomes an Ellipfis; but if it incline towards the Cone's Vertex, it becomes an Hyperbola, which is the Plain of any Section that falls between the Parabola and the Triangle. And therefore there may be as many Varieties of Hyperbola's produced from one and the fame Cone, as there may be Ellipfes.

To be brief, a Circle may change into an Ellipfis, the Ellipfis into a Parabola, the Parabola into an Hyperbola, and the Hyperbola into a plain Ifofceles Triangle: And the Center of the Circle, which is its Focus or burning Point, doth, as it were, part or divide itfelf into two Foci fo foon as ever the Circle begins to degenerate into an Ellipfis; but when the Ellipfis changes into a Parabola, ons End of it \&ies open, and one of its Foci vanifhes, and
the remaining Focus goes along with the Parabola when it degenerates into an Hyperbola: And when the Hyperbola degenerates into a plain Ifofceles Triangle, this Focus becomes the vertical Point of the Triangle (viz. the Vertex of the Cone); fo that the Center of the Cone's Bafe may be truly faid to pafs gradually through all the Sections, until it arrives at the Vertex of the Cone, ftill carrying its Latus Rectum along with it : For the Diameter of a Circle being that Right Line which paffes through its Center or Focus, and by which all other Right Lines drawn within the Circle are regulated and valued, may (I prefume) be properly called the Circle's Latus Rectum : and although it lofes the Name of Diameter when the Circle degenerates into an Ellipjis, yet it retains the Name of Latus Rectum, with its firft Properties, in all the Sections, gradually fhortening as the Focus carries it along from one Section to another, until at laft it and the Focus become co-incident, and terminate in the Vertex of the Cone.

I have been more particular and fuller in thefe Definitions than is ufual in Books of this Subject, which I hope is no Fault, but will prove of Ufe, efpecially to a Learner: And altho' they may perhaps feem a little ftrange, and at firft hard to be underftood, yet, when they are well confidered, and compar'd with a Cone cut into fuch Sections as have been defined, they will not only be found true, but will alfo help to form a true and clear Idea of each Section.

## C H A P. II.

## Concerning the Cbief Properiies of an $\mathbb{C l l i t i s}$.

NOTE, If the tranfuerfe Diameter of an Ellipfis, as TS in the following Figure, be interfocted or divided into any two Parts by an Ordinate rightly apply' $d$, as at the Points $A, C, a, 8 \times c$. then are thoofe Parts T $A, T C, T a$, and $S A, S C, S a, \& c c$. ufually called Abfciffæ (which fignifies Lines or Parts cut off) and by the Rectangle of any two Abiciffe is meant the Reciangle of fuch two Parts as, being added together, will be equal to the Tranfverfe Diameter.

$$
\begin{gathered}
\text { As } T A+S A=T S . \quad \text { And } T C+S C=T S . \\
\text { Or } T A+S A=T S, \& \times c .
\end{gathered}
$$

## Section 1.

Every Ellipfis is proportion'd, and all fuch Lines as relate to it are regulated, by the Help of one general Theorem. Theorem. $\left\{\begin{array}{l}\text { As the Rectangle of any two Abfiffxe }: \text { is to the Square } \\ \text { of Half the Ordinate which divides them }:=\text { o is the } \\ \text { Rectangle of any other two Abfcifx }: \text { to the Square } \\ \text { of Half that Ordinate which divides them. }\end{array}\right.$ That is, $T A \times S A: \square B A:: T a \times S a: \square b a$ $\mathcal{T} A \times S A: \square B A:: T C \times S C: \square N C$ $\mathcal{T} C \times S C: \square N C:: T a \times S a: \square b a$ \&ic.

## Demonfration.



Let the annexed Figure reprefent a Right Cone, cut thro' both Sides by the Right Line TS; then will the Plain of that Section be an Ellipfis (by Sect. 3. Chap. 1.) TS will be the Tranfverfe Diameter, $N C N$ and $b a b$ will be Ordinates rightly apply'd; as before. Again, if the Lines $D d$ and $K k$ be parallel to the Cone's Bafe, they will be Diameters of Circles (by Sect. 2. Chap. 1.) Then will $\triangle T C K$ and $T a D$ be alike. Alfo, $\triangle S a d$ and $\triangle S C k$ will be alike.



Or, the Truth of thefe Proportions may be otherwife prov'd by a Circle, without the Help of the Cone; thus: Let any Ellipfis be circumfcrib'd and infcrib'd with Circles, as in the following Figure ; then from any Point in the circumferib'd Circle's Periphery, as at $B$, draw the Right Line $B a$, parallel to the femi-conjugate Diameter $N c$, then will $b$ a be a Semi-ordinate rightly apply'd to the tranfverfe Diameter T $S$, as before. Again, from the Point $b$ (in the Ellipfis's Periphery) draw the Right Line $b d$ parallel to the Tranfverfe TS ; and draw the Radius $B C$. Then will $\triangle B C a$ and $\Delta C f d$ be alike.


And fo for any other $A b f c i f f e$ and their Semi-ordinates.
Thefe Proportions being found to be the true and common Properties of every Ellipfis, all that is farther requir'd in (or about) that Section may be eafily deduced from them.
Sect. 2. To find the llatus aterum, or wight joarameter of any Ellipts.
There are fevetal Ways of finding the Latus Rectum, but I think none fo eafy, and fhews it fo plainly to be the Third Principal Line in the Ellipfis, as the following.
Theorem. \{ $\begin{aligned} & \text { As the Tranfuerfe Diameter }: \text { is in Proportion to the } \\ & \text { Che }\end{aligned}$ Conjugate $::$ fo is the Conjugate: to the Latus Rectum. Viz. (in the following Fig.) IS : Nn : : Nn: LR the Latus Rectumis

## Denronftration:-

From the laft Proportions take either of the Antecedents, and its Confequents viz, either $\mathcal{T} C \times S C: \square N C$, or Ta $\times S a: \square b a$, Bbb
and make TS the third Term, to which find a fourth Proportional, and it will be $=L R$ :


From hence 'tis evident that $L R$, thus found, is that Ordinate by which the other Ordinates may be regulated and found. Therefore (according to its Definition Secf. 3, Chap. 1.) it is the true Latus Rectum. Q E. D.

## Confectary.

Hence it follows, that if the tranfverfe and conjugate Diameters of any Ellipfis are given (either in Lines or Numbers) the Latus Rectum may be eafily found; and then any Ordinate, whofe Diflance from the Conjugate is given, may be found, as above.

## Sect. 3. To find the Jorus of any Ellipfis.

The Focus is the Diftance of the Latus Rectum from the Conjugate or Middle of the Ellipfis (vide Definition 4, Page 364.) and that Diftance is always a Mean Proportional between the half Sum and half Difference of the tranfverfe and conjugate Diameters; which gives this Theorem. From the Square of half the Tranfverfe fubtract the THEOREM. $\left\{\begin{array}{l}\text { Square of half the Conjugate, the fquare Root of their }\end{array}\right.$ Difference will be the Distance of each Focus from the Middle or common Center of the Ellipfis.
That is, fuppofing the Points $f$ and $F$ to be the two Foci, vir. $f C=C f$, and $T C=\frac{1}{2} T S . N C=\frac{1}{2} N n$. Then, $T C+N C$ : $f C:: F C: T C-N C$. Ergo $\square F C=T C-\square N C$. Conrequently, $F C=\sqrt{\square T C-\square N C}$.

## © Denonfration.

Firft $\mid$ ITS $\times L R=\square N n$, by 8th Step of the laft Procels.
And $2 T S: L R:: T F \times S F: \square L F$, common Properties ${ }^{\circ}$
That is, $3 \mathcal{T S}: L R:: \overline{T C-C F} \times \overline{T C-C F}: \frac{7}{\ddagger} \square L R=\square L F$


Now from hence is deduced that notable Propofition, upon which is grounded the ufual Method of defcribing an Ellipfis, and drawing of Tangents, \&c.
proposition.
If from the tuo Foci of any Ellipfis there be drawn two Right Lines, $f_{0}$ as to meet each other in any Point of the Elliplis's Periphery, the Sum of thofe Lines will be cqual to the Tranfverfe.
Viz. $f N \times N F=T S$. $f L \times L F=T S$. $\operatorname{Or} f B+B F=T S$, \&c.

## memonfration.



And this Propofition mult needs hold true to every Point in the Ellipis's Periphery, viz. at $B, \& x$. As will evidently appear to any one who rightly confiders, That, as a Thread juft the Length of the Diameter of any Circle having its two Ends ty'd together, and then mov'd about a Point in the Center (viz. by making it a double Radius) will, by drawing another Point in its Extremity, deferibe the Periphery of a Circle; [vide Definition Page 280] even fo, if a Thread juft the Length of the tranfverfe Diameter (TS) having its two Ends fo fix'd upon the two Foci ( $f$ and $F$ ) that it may be mov'd about them, by drawing a Point in its Extremity (viz. at its full Stretch) it will defcribe the true Peripbery of an Elliptis.

Now, altho' this eafy Way of defcribing, or, as ufually phras'd, drawing an Ellipfos, be mechanical, and known even to moft Foiners, Carpenters, \&c. yet it gives as compleat and clear an Idea of that Figure as any other $\mathrm{W}_{\text {ay }}$ whatfoever; and by defcribing it thus about its two Foci, as a Circle is about its Center, doth plainly Thew that thofe two Points are not improperly call'd particular Centers in Definition 4, Sect. 3, Chap. 1. for each of them bears much the fame Refpect to the Ellipfis's Periphery, as the Circle's Center doth to its Periphery.

Sect. 4. To defcribe or delineate an Ellipfis feveral Ways.
There are feveral (otber) Ways of defcribing an Ellipfis, both Geometrically and Numerically, according to peculiar Occafions, but I fhall only mention two or three of them, leaving the reft to the Learner's Genius. Now, in order to that Work, it will be convenient to confider what Lines are requifite to limit ar bound its Form, which I take to be chiefly thefe following.
I. If the Tranfyerfe and Conjugate are given, the Ellipfis is perfectly limited; (vide Confectary Page $3^{63}$.) for if $T S$ and $N n$ be fet at Right Angles in their Middle at $C$, and $T C$ or $C S$ be fet off from $N$, or $n$, both Ways upon the Tranfverfe to $f$ and $F$, (viz. make $f N$ $=T C=N F$ ) then will thofe Points $f$ and $F$ be the two Foci (by $4 t^{\text {th Step of the laft Procefs) and then the Ellipfis may be defcrib'd as }}$ above.
2. If the Tranfverfe Diameter and Latus Rectum are given, the Ellipfis is truly limited, becaufe by them the Conjugate may be found, by Sect. 2.
3. Or if only the Tranfverfe, and the Proportion it hath either to the Conjugate or Latus Rectum, be given, the Ellipfis is thereby limited. As for Inftance; fuppofe the given Ratio between the Tranfverfe and Conjugate to be, as $a:$ to $d$ :
Viz. $a: d:: T S: N n$, then $\frac{T S \times d}{a}=N n$, \&c.
4. If either the Tranfverfe or Conjugate, and the Diftance of the Focus from the Conjugate be given, the Ellipfis is limited, becaufe by them the Conjugate or Tranfverfe may be found.

Thefe being premis'd, and the precedent Work a little confider'd, it muft be eafy to defcribe or delineate any Ellipfois in Plano, either Geometrically or Numerically.

1. To defcribe an Ellipfis Numerically by Points.

Suppofe the Tranfuerfe Diameter TS $=20$, and the Conjugate $N n=12$, (either Inches, or any other equal Parts) and let them crofs each other at Right Angles in their Middles, as in the Point $C$; then will T $C=C S=10$, and $N C=C n=6$, and it will be 20:12::12:7,2 = the Latus Rectum.


Again 20:7, 2. Or rather take their Ratio.
 1:0, $36:: \overline{10+3} \times \overline{10-3}: \square \mathrm{d} . \| \mathrm{\|} .8 \mathrm{cc}$.

If fo many Semi-ordinates as may be thought convenient (the more the better) be found in this Manner, and every one of them be fet off at Right Angles from its refpective Point in the Tranfverfe Diameter each Way, viz. from I to $a$, from 2 to $b$, from 3 to $d, \& c$. Then if a Curve Line be carefully drawn with an even Hand thro' thofe extreme Points $a, b, d$, \&cc. it will be the Ellipfis's Periphery requir'd.

## 2. To defaribe an Ellipfis Geometrically by Points.

Having the Tranfverfe and Conjugate Diamsters given, viz. TS and $N n$, placed at Right Angles in their Middies, as before : Then from either End of the Conjugate, viz. $N$ (or $n$ ) fet off half the Tranfverfe Diameter to $\boldsymbol{x}$. That is, make $N x=T C$ (continuing the Conjugate $N n$ when it is fhorter than T C) Or, which is all one, make $C x=T C-N C$. Then take any Point in the Line $C \approx$ at Pleafure; fuppofe it at $G$, and from that Point at $G$ fet off
 the Diffance $C x$ to the Tranfverfe (as at $E$ ) viz. make $G E=C x$, and join the Points $G E$ with a Right Line, produced fo far beyond $E$ as to make $E B=N C$. Confequently $G B=T \cdot C$.
Then, I fay, where-ever the Point $G$ was taken between $C$ and $x$, the Point $B$ will juft touch (or fall in) the Ellipfis's Periphery.

## Demonftration.

Draw the Right Line $B A$ perpendicular to $T S$, viz. let $B A$ be a Semi-ordinate rightly apply'd to the tranfverfe Diameter $T S$; then $\triangle G C E$ and $\triangle B A E$ will be alike.
Confequently $1 \mid C E: A E:: E G: E B$, by Theorem 13 .
1 , and $2 C E+A E: A E:: E G+E B: E B$. Seep. 192. But $3 C E+A E=C A . E G \times E B=T C$. And $E B=N C$
Therefore 6 , in 口's

5, $\quad \because$
That is, $8 \times \square$ TS $9 \pm 10 \square \square N C \times \square T C-\square C A \times \square N C=\square A B \times \square T C$ 10, Analogy $11 \square T G: \square N C: \square T C-\square C A: \square A B$

That is, $12 . T C \times C S: \square N C:: \overline{T C+C A} \times \overline{T C-C A}: \square A B$ which is according to the common Properties of the Ellip/fs: Therefore the Point $B$ is truly found.

Hence it follows, that if a convenient Number of fuch Lines as $G E B$ be fo drawn (as above directed) from the like Number of Points taken between $C$ and $x, \& x c$. their extream Points (as at B) will be thofe Points by which (with an even Hand) the Ellipfis may be truly defcrib'd, as before.

But, if this be well underftood, it will be very eafy to conceive how to defcribe an Ellipfss very readily, without drawing thofe Lines, by having a thin, ftreight, narrow Ruler juft the Length of $\mathcal{T} C$, made fomewhat fharp at both Ends, upon which, from one of its Ends, fet off the Length of $N C$. Then, if the Point upon the Ruler which reprefents $E$ be gradually or eafily moved along the Tranfverfe $\mathcal{T} S$, and at the fame Time the Point or End reprefenting $G$ be kept fliding clofe along the Conjugate $N n$, 'tis evident from the Work above, that the End of the Ruler reprefenting $B$ will, by that Motion, affign the true Periphery of the Ellipfis required; for by that Motion the ftreight Edge of the Ruler doth fupply an infinite Number of the aforefaid Lines; as will appear very plain and eafy in Practice.

## Scholium.

Now from hence was deduced the firft Invention of that wellcontrived Inftrument for drawing an Ellipfis by one Motion, commonly called the Elliptical Compafles, being ufually made of Brafs, and compos'd of three Parts, two of which reprefent for rather fupply) the tranfverfe and conjugate Diameters fet together at Right Angles; and the third Part is a moveable Ruler, which performs the Office of the laft-mentioned thin Ruler. But becaufe the making of it is fo well known to moft Mathematical Inftru-ment-makers, efpecially to that accurate and ingenious Artift Mr JOHN ROWLEY, Matbematical Inftrument-maker, under St. Dunftan's Church in Fleet-ftreet, London; who, for his great Skill in contriving, framing, and graduating all kind of Mathematical Inftruments, may, I believe, be juftly called one of the beft Workmen of his Trade in Europe; I think it needlefs therefore to give a particular Defcription of that Mfirument.

Alfo from hence came that ingenious Invention of making Engines for turning all Sorts of elliptical or oval Work, as oval Boxes, Picture-Frames, \&e.

Sect. 5. Any Ellipfs being given, to find its Turaurberfe and $\mathbb{C o n j u g a t e}$ Diameters.

Suppofe the given Ellipfis to be TNSn (in the annexed Scheme) in which let it be required to find the tranfverfe Diameter $T S$ and its Conjugate $N n$. Draw within the Ellipfis any two Right Lines parallel to each other as $H b$ and $M m$, and bifect thofe Lines, viz. find the Middle Point of each, as at $K$ and $P$; then thro' thofe Points $K$ and $P$ draw a Right Line, as $D A$, and it will be a Diameter; for it will divide the Ellipfis into two equal


Parts, [See Defin. 1, Page 363.] confequently the Middle of D A will be the true Middle or common Center of the Ellipfis, as at $C$.

For 'tis the Nature and Property of all Diameters, bowfoever they are drawn in any Ellipfis (as 'tis in a Circle) to cut or crofs one another in the common Center or Middle of the Figure, as at $C$.

Upon the Point $C$ defcribe an Arch of any Circle that will cut the Ellipfis's Periphery in two Points, as at $B$ and $b$; then join thofe Points $B b$ with a Right Line, and it will be an Ordinate, thro' whofe Middle (as at a) and the common Center $C$, the tranfverfe Diameter $\mathcal{T} S$ muft pafs. For $B S=S b$, and $B a$ is at Right Angles with $\mathcal{T} S$; therefore the Line $B b$ is an Ordinate rightly apply'd to $T S$ the tranfverfe Diameter. And if thro' the Point $C$ there be drawn the Right Line $N n$ parallel to $B b$, it will become the Conjugate; as was requir'd.

Sect. 6. To draw a touch the Ellipfis's Periphery in any affigned Point.

The Drawing of Tangents to or from any afligned Point in the Ellipfis's Periphery, admits of three Cafes.

Cafe I. If it be requir'd to draw a Tangent that may touch the Ellipfis in either of the extream Points of its tranfverfe Diameter, as at $T$ or $S$, it is plain the Tangent muft be drawn parallel to the conjugate Diameter $N n$; as $H K$ in the following Figure is fupt pos'd to be.

Cafe 2. Or, if the Tangent muft be drawn to touch the Ellipfis in either of the extream Points of its Conjugate Diameter, as at $N$ or $n$, 'tis as evident that it muft be drawn parallel to the Tranfuerfe Diameter T S, as $K M$. Confequently if that Tangent and the Tranfverfe were both infinitely continu'd, they would never meet.

Cafe 3. But if it be requir'd to draw a Tangent that may touch the Ellipfis in any other Point, as at $B$, \&c. Then, if
 the Tangent and the Tranfuerfe Diameter be both continu'd, they will meet in fome Point, as at $P$; and thofe two Points (viz. $B$ and $P$ ) do fo mutually depend upon each other, that one of them muft be affigned in order to find the other, that fo the Tangent may by them be truly drawn. Let $D=T S, y=A S$, and $z=$ $A P$. Then, if $y$ be given, $z$ may be found by this
Theorem $\left\{\frac{D y-y y}{\frac{1}{2} D-y}=z\right.$. Or, if $z$ be given, $y$ may be found by this Theorem $\left\{\frac{D+z}{2} \pm V\left\{\frac{D D+z z}{4}=y\right.\right.$.

## Demonfration.

Draw the Semi-ordinate $b a$, as in the Figure; then will $\triangle B A P$ and $\triangle b a P$ be alike. Put $x=A a$ the Diffance between the two Semi-ordinates (viz. between $B A$ and $b a$ ) which we fuppofe infinitely fmall.

$\left.11 \div|12| z=\frac{D y-y y}{\frac{1}{2} D-y}\right\}\left\{\begin{array}{l}\text { which is the Ift Theorem, and gives } \\ \text { the following Analogy. }\end{array}\right.$ Analogy $13 \frac{1}{2} D-y: y:: D-y: z$. Viz. $C A: S A: T A: A P$ ro-yz $14 C$ 口 $15 \mathrm{w}^{2}$ That is, $\left.{ }^{1} 7\right|^{y}=\frac{1}{2} D+\frac{1}{2} z \pm \sqrt{\frac{1}{4} D D+\frac{1}{4} z z}\left\{\begin{array}{l}\text { which is the } 2 \mathrm{~d} \\ \text { Theor. Q. E. D. }\end{array}\right.$

The Geometrical Performance of thefe two Theorems is very eary, as by the following Figure.

1. Suppofe the Point B in the Ellipfos Periphery were given, and it were' requir'd to find the Point $P$, \&\&c.

Make TC Radius, and upon the common Center $C$ defcribe the Senicircle $\mathcal{T} d S$, and join the Points $C$ and $d$ with a Right Line; then bifeer that Line (by Prob. 2, Page 287) and mark the Point where the bifecting Line would crofs the Tranfuerfe, as at \|e. Upon that Point $\|$ e, with the Radius $C_{e}$ (or Cd ) defcribe another Semicircle, producing the Tranfuerfe Diameter to its Periphery, and it will afign the Point $P$.

For if $D=T S, y=A S, z=A P$, as before.



Therefore the Point $P$ is truly found. Confequently, if a Right Line be drawn through thofe Points $B$ and $P$, it will be the Tan gent requir'd, according to the firft Theorem.
2. The Converfe of this is as eafy, to wit, if the Point $P$ be given, thence to find the Point $B$ in the Ellip is Periphery. Thus, circumfcribe half the Ellipfis with the Semicircle $\mathcal{T} d S$, as before; and bifect the Diftance between the Points $C$ and $P$, as at $\varepsilon$, viz. Let $C e=e P$. Then making $C$ e Radius, upon the Point $c$, defcribe the Semicircle C d P; and from the Point where the two Semicircles interfect or crofs each other, as at $d$, draw the Right Line d $A$ perpendicular to the Tranfuerfe $T S$, and it will affign
the Point of Contact $B$ in the Ellip/is Periphery through which the Tangent mult pals.

But the Practical Metbod of drawing Tangents to any affign'd Point in the Ellipfis Periphery may (without finding the aforefaid Point P) be eafily deduced from the following Property of Tangents drawn to a Circle, which is this:

If to any Radius of a Circle, as $C B$, there be drawn a Tangent Line (as $H K$ ) to touch the Radius at the Point $B$; the two Angles, which the Tangent makes with the Radius, will always be two Right Angles (16, 17, 18, 19 Euclid 3.) that is, $\leftarrow H B C=\leftarrow C B K=90$ ?


In like Manner the two Angles, made between the Tangent and the two Lines drawn from the Foci of any Ellipfis to the Point of Contact, will always be equal, but not Right Angles, fave only at the two Ends of the Tranfverfe Diameter.

Thefe being well confider'd, and compar'd with what hath been faid in Page 366, it mult needs be eary to underftand the following Way of drawing Tangents to any affign'd Point in the Ellipfis Periphery; which is thus:

Having by the tranfuerfe and conjugate Diameters found the two Foci $f$ and $F$, by Sect. 3. from them draw two Right Lines to meet each other in the a afrgn'd Point of Contact, as $f b$ and $F b$ (or $f B$ and $F B$ ) in the annex'd Figure. Next fet off (viz. make) $b d=b F$ (or $B D$ $=B F$ ) and join the Paints Fd (or FD) with a Right Line.

Then, I fay, if a Right Line be drawn through the Point of Contact $b$ (or $B$ ) parallel to $d F$, or $D F$, it will be the Tangent requir'd. For
 it is plain, that as the $\leftarrow f N H=\leftarrow F N K$ when the Tangent is parallel to the Tranfuerfe Diameter, even fo is the $\tau f b \vec{b}=$ $\leftarrow F B k$, (and $<f B H=\leftarrow F B K$ ) and will be every where fo, as the Point of Contaet $b$ (or B) and its Tangent is carried about the Ellipfis Periphery with the Lines $f b F$ (or $f B F$ ).

## C H A P. III.

## Concerning the Cbief Properties of every 羽atabola.

$N^{\prime}$OT E, in every Parabola, the intercepted Diameter, or that Part of its Axis, which is between the Vertex and that Ordinate which limits its Length, as $S a$ or $S A, \& c$. is call'd an Abfciffa. Sect. i. The Plain or Figure of every Parabola is proportion'd by its Ordinates and Abfciffr, as in the following Theorem:
Theorem $\left\{\begin{array}{l}\text { As any one Abfciffa: is to the Square of its Semi- } \\ \text { ordinate }:: \int o \text { is any other Abfcifa }: \text { to the Square of } \\ \text { its Semi-ordinate. }\end{array}\right.$
That is, if we fuppofe the annex'd $\mathrm{Fi}_{i-}$ gure to be a Parabola, wherein $S a$, and $S A$, are $A b f c i f a$, and $b$ a $b, B A B$, Ordinates rightly apply'd, it will be $S a: \square b a:: S A: \square B A$ wherefoever or $S a: S A:: \square b a: \square B A$ the Foints $a$, And fo for any other $A b f_{c i f} f_{a}$, \&c.


## Somonfration.

Let the following Figure HVG reprefent a Right Cone cut inin two Parts by the Right Line $S A$, parallel to its Side $V H$. Then the Plain of that Section, viz. $B b S b B$, will be a Parabola, Li S. 4. Page 364, wherein let us fuppofe $S A$ to be its $A x i$, and $A_{1}, B, 3$ to be Ordinates rightly apply'd to that Axis. Ayann, imagine the Cone to be cut by the Right Line $b g$ parallel ro ito Bafe HG. Then will $h g$ be the Diameter of a Circle, by Sect. 2. Page 363. and $\triangle S$ ag like to $\triangle S A G$.


Thefe

Thefe Proportions being prov'd to be the common Property of every Parabola, all that is farther requir'd about, that Section, or Figure, may from thence eafily be deduced.

Sect. 2. To find the Latus hectum or Right joaramefer of any Parabola.
The Latus Rectum of a Parabola hath the fame Ratio or Proportion to any Abfcifa, and its Semi. Ordinate, as the Latus Rectum of any Ellipfis hath to its Tranfuerfe and Conjugate Diameters, and may be found by this Theorem.
Theorem $\left\{\begin{array}{l}\text { As any Abfcifa }: \text { is in Proportion to its Semi-ordinate } \\ :: \text { So is that Semi-ordinate : to the Latus }\end{array}\right.$

$$
\text { Let } L=\text { the Latus Rectum. }
$$

 Step of the laft Process; therefore $L$ (thus found) is the true Latus Rectum, by which all the Ordinates may be regulated and found, according to its Definition in Section 4, Page 364. For by the third Step $S a \times L=\square b a$, and by the 4th Step $S A \times L=\square$ $B A$. Confequently $\sqrt{S a \times L}=b a$ and $\sqrt{S A \times L}=B A$; and fo for any other Ordinate.

Or if the Ordinates are given, to find their $A b \int c i \iint a$; then it will be, $L: b a:: b a: S a$, and $L: B A:: B A: S A$, \& c.

Confequently $\frac{\square b a}{L}=S a$, and $\frac{\square B a}{L}=S A, \& c$.
From the Confideration of thefe Proportions, it will be eafy to conceive how to find the Latus Rectum Geometrically, thus:

Join the vertical Point $S$ of the Axis, and either extream Point of any Ordinate as $B$ (or $b$ ) with a Right Line, viz. SB (or $S b$ ) and bifect that Line (by Problem 2. Page 287.) marking the Point where the bifecting Line doth interfect or crofs the Axis, as at $E$ (or $e$ ) and with the Radius S $E$ (or $S$ e) upon the Point $E$ (or e) defcribe a Circle; (as in the annex'd Figure) then will the Diftance between the Ordinate and that Point where the Circle's Periphery cuts the Axis, viz. $A R$ (or ar) be the true $L a$ -
 tus Rectum required.

For $S A: B A:: B A: A R$, and $S a: b a:: b a: o r$, by Theor. 13 . therefore $A R=L$. And ar $=L$, by the 1ft and 2 d Steps above.

## Conjeczary.

From thefe Proportions of finding the Latus Rectum, it will be ealy to deduce and demonftrate the following Theorem: Theorem $\left\{\begin{array}{l}\text { As the Latus Rectum : is to the Sum of any two Semi- } \\ \text { - }\end{array}\right.$ Theorem ordinates: : fo is the Difference of thofe two Semi-ordinates: to the Difference of their Absciffe.
Suppofe any Rigbt Line drawn within the Parabola, as $b D$, parallel to its $A x i s S A$; then will that Line (viz. $b D)$ be a Diameter (by Def. 5, Page 365) which will make $E D=A B+a b$, $D B=A B-a b$, and $b D=S A-S a$. Then it will be $L: E D:: D B: b D$, according to the Theorem.

## Demonftration.



This peculiar Property of the Parabola was firft publifh'd, Anne 1684, by one Mr. Thomas Baker, Rector of Bihhop Nympton in Devonfhire, in a Treatife entitled, The Geometrical Key: Or, the Gate of Equations unlock'd; wherein he hath fhew'd the Geometrical Conftruction and Solution of all Cubick and Biquadratick Adfected Æquations by one general Method, which he calls a Central Rule, deduced from this peculiar Property of the Parabola.

Sect. 3. To find the grocus of any Parabola.
The Focus of every Parabola is that Point in its Axis th. ugl which the Latus Rectum doth pafs. (See Definition 3. Sect. 4. Page 359.) Therefore its Diftance from the Vertex of the Parabola may be eafily found, either by the Latus Rectum itfelf, or by any other Ordinate, and its $A b f c i f f e$.

Thus, fuppofe the Point at $F$ to be the Focus, $S$ the Vertex, the Ordinate $R F R=L$ the Latus Rectum, and $b a b$ any other Ordinate. Then will $S F=\frac{3}{2} L$. Or $S F=\frac{\square b a}{4^{S a}}$


## © monftration.

| Firft |  | S $F \times L=\square F R$. by Sect. 2. Page 375. |
| :---: | :---: | :---: |
| And | 2 | $F R=\frac{1}{2} L$; for the Ordinate $R F R=L$ as above. |
| $20^{2}$ | 3 | $\square F R=\frac{1}{4} \square \square=\frac{1}{2} L \times \frac{1}{2} L$ |
| $\mathbf{1},=3$ | 4 | $S F \times L=\frac{1}{4} \square L$ |
| $4 \div L$ | 5 | S $F=\frac{1}{4} L$, as by Definition 4. Sect. 4. Pag. 359. |
| Again | 6 | $\frac{\square b a}{S a}=L$, by the third Step in Page 375. |
| Confeq. | 7 | $\frac{\square b a}{4^{s} a}=\frac{1}{4} L$, \&cc. as above. |

Sect. 4. To deferibe, or draw a Parabolo Several Ways.
Note, There are two or three Ways of drawing a Parabola inftrumentally at one Motion ; but becaufe thofe Inftruments or Machines are not only too perplex'd for a Learner to manage, but alfo a little fubject to Error, I have therefore chofen to fhew how that Figure may be (the be!t) drawn by a convenient Number of Points, viz. Ordinates found, either Numerically or Geometrically, according to the Data; which if the Work of the three laft Sections be well confider'd, muft needs be very eafy.

1. If any Ordinate and its $A b \int c i f a$ are given, there may by them be found as many Ordinates as you pleafe to affign or take Points in the Parabola's Axis; (by Sect. 4. Page 380) and the Curve of the Parabola may be drawn by the extream Points of thofe Ordinates, as the Ellipfis was Page 373.
2. If the Latus Rectum, and either any Ordinate, or its Abfciffa, are given, then any affign'd Number of Ordinates may by them be found (by Sect. 2. Page 381) either Numerically or Geometrically, \&c.
3. If only the Diftance of the Focus from the Vertex of the Parabola be given, any affign'd Number of Ordinates may be found by it. For $S F=\frac{1}{4} L$ the Latus Rectum, and $\frac{1}{2} L=F R$ as in the laft Section; and it will be, as $S F:$ is to $\square F R::$ fo is any other $A b f$ ciffa, viz. (Sa or $S A, \& c \mathrm{c}$.) : to the Square of its Semiordinate (viz. $\square b a$, or $\square B A$ ) according to the common Property of the Parabola.

Altho' any of thefe Ways of finding the Ordinates are ealy enough, yet that Way which may be deduced from the followIng Propofition will be found much more eafy and ready in Practice.

$$
\text { Proposition. }\left\{\begin{array}{l}
\text { The Sum of any Abcilfa and focal Diftance from } \\
\text { the Vertex, will be equal to the Difance from } \\
\text { the Focus to the extream Point of the Ordinatc, } \\
\text { robich cuts off that Abfcifa, }
\end{array}\right.
$$

For Inftance, fuppofe $S$ to be the Vertex of any Parabola, the Point $F$ to be its Focus, and $A B$ any Semi-ordinate rightly apply'd to its Axis S A: Then, I fay, where-ever the Point $A$ is taken in the $A x i s$, it will be $S A+S F$ $=F B$. Confequently, if $S f=S F$, it will be $f A=F B$.


## £dmonfration.

Firft $\mid$ | $F=\frac{1}{4} L$ by the 7 th Step, Sect. 3 .
Ergo $2 f A=F A+\frac{1}{2} L$ by Conftruction above.
$2 \omega^{2} \quad 3 \square f A=\square F A+\overline{F A \times L+} \div L L$

| 俉 |  |
| :---: | :---: |
|  | $45 . \begin{aligned} & S A=F A \\ & S A \times L=F A \times L+\cdots L L\end{aligned}$ |
| $4 \times 2$ | $6 \square A B=F A \times L+\frac{1}{4} L L$ |
| 3-6 | $7 \square f A-\square A B=\square F A$, confe. $\square f A=\square F A+\square A B$ |
| But | $8 \square F A+\square A B=\square F B$, by Theorem 11 |
| Ergo | $\square f a=\square F B$ |
| $\mathrm{ws}^{2}$ | $f A=F B \quad$ Q.E.D. |

This
Chap. 3. concerning the patabola. $3^{85}$

This Propofition being well underfood, 'twill be very eafily apply'd to Prattice, fuppofing the Focal Diflance given, or any other Data by which it may be feund. Thus draw any Right Line to reprefent the Parabo!a's Axis, and from its vertical Point, as at $S$, fet off the Focal Difance both upwards and downwards, viz. make $S f=S F$, the Diftance of the given Focus from the Vertex; as in the Scheme: Then by the Profofition 'tis evident, that, if never fo many Lines be drawn Ordinately at Right Angles to the Axis, the true Diftance between the Point $f$ out of the Parabola, and any of thofe Lines (or Ordinates) being meafur'd or fet off from the Focus F to the fame Line or Ordinate, 'twill affign the true Point in that Line through which the Curve muft pars; that is, it will thew the true Limits or Length of that Ordinate; as at $B$ in the laft Scheme.

Proceeding on in the verv fame Manner from Ordinate to Ordinate, you may with great Expedition and Exachnefs find as many Ordinates (or rather their Points only, like B) as may be thought convenient, which, being all join'd tegether with an even Hand, will form the Parabola requir'd.
N. B. The more Ordinates (or their Points) there are found, and the nearer they are to one another, the eafier and exacter may the Curve of the Parabola be drawn. The fame is to be obferv'd when any other Curve is requir'd to be drawn by Points.

Sect. 5. To draw a Tanzent to any given Point in the Curve of $a$ Parabola.

Tangents are very eafily drawn to the Curve of any Parabola; For, fuppofing $S$ to be its Vertex, $B$ the Point of Contaet (viz. the Point where the Tangent mult touch the Curve) and $P$ the Point where the Tangent will interfect (or meet with) the Parabola's Axis produced: Then if from the Point of Contact $B$ there be drawn the Semi-ordinate, $B A$ at
 Right Angles to the Axis $S A$, wherefoever the Point $A$ falls in the Axis, 'twill be $S P=S A$.

## \$Dmonfration.

Draw the Semi-ordinate ba (as in the Figure) then will the $B A P$ and $\triangle b$ a $P$ be alike. Let $y=A S$ the $A b \int i f f a$, and $z=$
$S P$; put $x=A$ a the Diftance between the two Semiordinates, which we fuppofe to be infinitely near each other, as in the Ellipfis, Page 377.


> Q.E.D.

## CH A P. IV.

## Concerning the chief Properties of the Hyperbola:

Z VOTE, any Part of the Axis of an Hyperbola, which is intercepted between its Vertex and any Ordinate (viz. any intercepted Diameter) is called an Abfiifa; as in the Parabola.

Sect. 1. The Plain of eucry Hyperbola is proportion'd by this general Theorem.

THEOREM. $\left\{\begin{array}{l}\text { m }\end{array}\right.$ As the Sum of the Tranfverfe and any Abciffa miltiply d into that Abfiffa: is to the Square of its Semi ordinate : : $f_{0}$ is the Sum of the Tranfverfe and any other $A b$ ciffa multiply'd into that $A b f c i f f a$ : to the Square of is Semi-ordinate.

Chap. 4. concerning the 驻perbola. 387
That is, if $\mathcal{T} S$ be the Tranfverfe Diameter, And $\{S a, S A$ Abcifix.
And $\left\{\begin{array}{l}\text { b a }, B A \text { Semi-ordinates. }\end{array}\right.$
Then is $\left\{\begin{array}{l}T a=T S+S a \\ T A=T S+S A\end{array}\right.$
And it will be
$T a \times S a: \square b a:: T A \times S A: \square B A$.
That is,
$\overline{\bar{I} S+S a} \times S a: \square b a:: \overline{T S+S A} \times S A:$ . 8 cc.


## Demonfration.

Let the following Figure HVG reprefent a Right Cone cut into two Parts by the Right Line $S A$; then will the Plain of that Section be an Hyperbola (by Sect. 5, Chap 1.) in which let $S A$ be its Axis, or intercepted Diameter, $b a b$ and $B A B$ Ordinates rightly apply'd (as before in the Parabola) and $\mathcal{T} S$ its Traniverife Diameter. Again, if the Cone is fuppos'd to be cut by hg, parallel to its Bare $H G$, it will alfo be the Diameter of a Circle, Eq . as in the Ellipfis and Parabola. Then will the $\triangle S g a$ and $\triangle S G A$ be alike; alfo the $\triangle T a b$ and $\triangle T A H$ will be alike; therefore it


Thefe Proportions are the common Property of every Hyperbola, and do only differ from thofe of the Ellipfis in the Signs + and -; as plainly appears in the following Proportions. That is, if we fuppofe TS the Tranfverfe Diameter common to both Sections (viz. both the Ellipfis and Hyperbola) as in the annexed Scheme: then in the Ellipfis it will be $\overline{T S-S a} \times S_{a}: \square a b:=\overline{T S}-S A \times S A$ : $\square A B$ as bv Sect. 1, Chap. 2. and in the $H y-$ perbola it is $\overline{T S+S a} \times S a: \square a b:: \bar{T} S+S A$ $\times S A: \square A B$, as above. Therefore all, that is farther requir'd in the Hyperbola, may (in a manner) be found as in the Ellipfos, due Regard being had to ctianging of the Sine.

 of any Hyperbola.

From the laft Proportion take either of the Antecedents and its Confequent, viz. either $T a \times S a: \square a b$. Or $T A \times S A: \square A B$, to them bring in the Tranfverfe $T S$ for a third Term, and by thofe three find a fourth Proportional (as in the Ellipfis) and that will be the Latus Rectum.


Confequently $L$ is the true Latus Rectum, or right Parameter, by which all the Ordinates may be found, according to its Definition in Cbap. 1. And becaufe $\mathcal{T} S+S a=T a$, let it be $T S+$ $S a$ inftead of $T a$, then it will be $\frac{\square a b \times T S}{T S \times S a+\square^{S} a}=L$ and in the $E l l i p f$ fis it would be $\frac{\square a b \times T S}{I S \times S a-\square S a}=L R=L$.

Chap. 4. concerning the leyperbola.
Sect. 3. To find the forus of any Hyperbola.
The Focus being that Point in the Hyperbola's Axis through which the Latus Rectum muft pafs (as in the Ellipfis and Parabola) it may be found by this Theorem.

> To the Reçangle made of half the Tranfuerfe into half the Latus Rectum, add the Square of half the
> Theorem. T'ranfverfe; the Square Root of that Sum will be the Diftance of the Focus from the Center of the Hy perbola.

## Demonfration.

Suppofe the Point at $F$, in the annex'd Scheme, to be the Focus fought ; then will $F R=\frac{1}{2} L$. Let $T C=$ $C S$ be half the Tranfverfe; then is the Point C call'd the Center of the Hyperbola (for a Reafon that fhall be hereafter fhew'd.) Again ; let $C S=d$. and $S F=a$

| Then | 1 | $2 d$ |
| :---: | :---: | :---: |
| That is, | 2 | TS : L : : $\overline{T S+S F}$, |
|  | 3 | $\frac{1}{2} d L=2 d a$ |
| $3+d d$ | 4 | $d d+\frac{1}{2} d L=d d+$ |
| $4 \omega^{2}$ | 5 | $\sqrt{d d+\frac{1}{2} d L}=$ |
|  |  | $\sqrt{\text { d } d}$ |



In the Ellipfis'tis, $2 d: L:: \overline{2 d-a} \times a: \frac{1}{4} L L$. that is, $\frac{1}{2} d L=$ 2da-a $a, \& c$.

The Geometrical Effection of the laft Theorem is very eafily perform'd, thus: make $S x=\frac{1}{2} L$, viz. half the Latus Rectum; and let $C S=d$, as above. Upon $C \times$ (as a Diameter) defcribe a Circle, and at $S$ the Vertex of the Hy perbola draw the Right Line $n S N$ at Right Angles to $C x$; then join the Points $C N$ with a Right Line, and 'twill be $C N=d+a=F C$.



Now

Now here is not only found the Diftance of the Hyperbola's Fo. cus, either from its Center $C$, or Vertex $S$, but here is alfo found that Right Line ufually call'd its Conjugate Diameter, viz. the Line $n S N$, which bears the fame Proportion to the Tranfverfe and Latus Rectum of the Hyperbola, as the Conjugate Diameter of the Ellipfis doth to its Tranfverfe and Latus Recfum. For in the Ellipfis TS: Nn::Nn:LR. per Sect. 2, Page 363. Confequentdy $\frac{1}{2} T S:{ }_{2}^{\frac{1}{2}} N n:: \frac{1}{2} N n: \frac{1}{2} L R$. But $\frac{1}{2} T S=d, \frac{1}{2} N n=S N$, and $\frac{1}{2} L R=\frac{1}{2} L$. Therefore $d: S N:: S N: \frac{1}{2} L$. As at the 2d Step above.

What Ufe the aforefaid Line $n S N$ is of, in Relation to the Hyperbola, will appear farther on.

## Sect. 4. To defcribe an Hyperbola in Plano.

In erder to the eafy Defcribing of an Hyperbola in Plano, it will be convenient to premife the following Propoftion, which differs from that of the Ellipfis in Sect. 3, Chap. 2, only in the Signs.

$$
\left\{\begin{array}{l}
\text { If from the Foci of an Hyperbola there be drawn } \\
\text { two Right Lines, fo as to meet each other in any } \\
\text { Point of the Hyperbola's Curve, the Difference of } \\
\text { thofe Lines (in the Ellipfis 'tis their Sum) will be } \\
\text { equal to the Tranfverfe Diameter, }
\end{array}\right.
$$

Proposition.

That is, if $F$ be the Focus, and it be made $C f=C F$ (as in the lan Scheme) then the Point $f$ is faid to be a Focus out of the Section (or rather of the oppofite Section) and it will be $f B$ $\sum_{2} B=T S$.

## Demonfration.

Suppore $f C$, or $C f=z$, and $S A=x$, let $C S$, or $T C=d$, as betore ; then will $f A=d+x+z$, and $F A=d+x-z$. Again, let $F B=h$, and $f B=b$, then $2 d=b-b$, by the Propofition.

From thele fubfituted Letters it follows,

$$
\left.\begin{array}{r|r|}
\text { That } \\
\text { And } \\
\text { But }
\end{array} \left\lvert\, \begin{array}{l}
d d+2 d x+2 d z+x x+2 z x+z z=\square f A \\
2+2 d x-2 d z+x x-2 z x+z z=\square F A \\
\text { Per 4ih } \\
\text { of } \ln \Omega
\end{array}\right.\right\}|3| \begin{aligned}
& \text { a } \\
& \square f A+\square A B=\square f, \text { and } \square f A+\square A B=\square F B \\
& d d+\frac{1}{2} d L=d a+2 d a+a a=\square F C=z z .
\end{aligned}
$$

$$
3-d d
$$

Chap. 4. concerning the huperbota.


But becaufe I would leave no Room for the Learner to doubs about changing the $\not$ 保ution, $d-z-\frac{z x}{d}=b$ into that of $z+\frac{z x}{d}-d=b$, it may be convenient to illuftrate the whole Procefs in Numbers, whereby (I prefume) 'twill plainly appear that $b-b=T S$.

In order to that, let the Tranfverfe $T S=2 d=12$, then $d=6$ fuppofe the Abfciffa $S A=x=4$, and the Semi-ordinate $A B=3$

Firfl $\mid \bar{T} \overline{S+S A} \times S A: \square A B:: T S: L$, per Seaf. 2.
r, viz. $212+4 \times 4=64: 9:: 12: 1,6875=L$
Again $3 \sqrt{d d+\frac{1}{2} d L}=d+a=C F$, per Sect. 3 -
3, viz. $4 \sqrt{3^{6}+5,0025}=6,408=C F=z$
Then $5 d+x+z=6+4+6,408-16,408=f A$
And $|6| d+x-z=6+4-6,408=3,59^{2}=F A$

| $\theta^{2}$ |  | $269,2224=\square f A$ |
| :---: | :---: | :---: |
| (0.2 ${ }^{2}$ | 8 | 12,9024 $=\square F A$ |
| But | 9 | $9=\square A B$, for $A B=3$ by Suppofition. |
| $7+9$ | 10 | 278,2224 $=\square f A+\square A B=\square f B$ |
| $8+9$ | 11 | 21,9024 = $\square F A+\square A B=\square F B$ |
| $10 \mathrm{mv}^{2}$ | 12 | $16,68=f B$ |
| $11 \mathrm{ws}^{2}$ | 3 | $4,68=F B$ |
| 12-13 |  | $12,00=f B=F B-T S$. Which was to be pro |

If this Propofition be truly underftood, it muft needs be ealy to conceive how to defcribe the Curve of any Hyperbola very readily by Points when the Tranfverfe Diameter and the Focus are given (or any other Data by which they may be found, as in the precedent Rules) thus:

Draw any ffraight Line at Pleafure, and on it fet off the Length of the given Tranfverfe $T S$, and from its extreme Points or Limits, viz. I S, fet off $T f=S F$, the Diftance of the given Focus (viz. the Point $f$ without, and $F$ within the Section, as before): that done, upon the Point $f$ (as a Center) with any aflum'd Radius greater than TS, defcribe an Arch of a Circle; then from that Radius take the Tranfverfe $T S$, making their Difference a fecond Radius, with which, upon the Point $F$ within the Section, defcribe another Arch to cut or crofs the firt Arch,
 as at $B$; then will that Point $B$ be in the Curve of the Hyperbola, by the laft Propofition. And therefore 'tis plain, that, proceeding on in this Manner, you may find as many Points (like $B$ ) as may be thought convenient (the more there are, and nearer they are together, the berter) which being all join'd together with an even Hand (as in the Parabola) will form the Hyperbola requir'd.

There are feveral other Ways of delineating an Hyperbola in Plano: One Way is, by finding a competent Number of Ordinates, as by Section I, Go$^{\circ} c$. but I think none fo eafy and expeditious as this mechanical Way: I fhall therefore, for Brevity's Sake, pals over the reft, and leave them to the Learner's Practice, as being eafly deduced from what hath been already faid.

Sect. 5. To draw a Tangent to any given Point in the Curve of an 想pertbola.
The drawing of a Tangent, that will touch any given Point in the Curve of an Hyperbola, may be eafily perform'd by Help of a Theorem; as in the Ellipfis, Sect. 6, Chap. 2.
Let $\left\{\begin{array}{l}D=T S \text { the Tranfuerfe Diameter. } \\ L \equiv \text { the Latus Requum }\end{array}\right.$


And $z=A P\left\{\begin{array}{l}\text { the Diftance between the } \\ \text { Ordinate and that Point } \\ \text { in the Tranverfe cut by } \\ \text { the Tangent. }\end{array}\right.$
Then, if $y$ be given, $z$ may be found by this Theorem, $\left\{\frac{D y+y y}{\frac{1}{2} D+y}=z\right.$ [which differs from that in the Ellip/fis only in Signs. Vide Page 37 I .]
Or, if $z$ be given, then $y$ may be found by this Theorem:
Theorem. $\sqrt{\frac{\overline{D D+z z}}{4}}:+\frac{1}{2} z-\frac{1}{2} D=y$.

## Drmonftration.

Draw the Semi-ordinate ba, as in the Figure, and put $x=A a\left\{\begin{array}{l}\text { an infinite fmall Space between the two Semi-ordi- }\end{array}\right.$ $\left\{\begin{array}{l}\text { nates; as before in the Ellip } f i s, \text { \&c. }\end{array}\right.$


6, 12 reduced $|12| \begin{aligned} & \frac{D y L+y y L-2 y L-D L}{D}= \\ & \frac{D y L z z+y y L z-2 D y L z-2 y y L z}{D z z}\end{aligned}$
13 Analogy
1 $3 \div \overline{\frac{1}{2} D+y}$
$13-\%$
16 口 $C$
$37 w^{3}$
$18 \pm 19 y=\sqrt{\frac{D+z z}{4}}:+{ }^{3} z-\frac{1}{2} D\left\{\begin{array}{l}\text { which is the fe- } \\ \text { cond Theorem. }\end{array}\right.$ Q. E. D.

The Geometrical Effection of the firft of thefe Theorems is very eafy; for, by the 14 th Step, 'tis evident that there are three Lines given to find a fourth proportional Line. By Problem 3, Page 308.]

## Scholium.

From the Comparifons, which have been all-along made in this Chapter, between the Hyperbola and the Ellitfots, 'twill be ealy (even for a Learner) to perceive the Coherence that is in (or between) thofe two Figures; but, for the better underftanding of what is meant by the Center and Ajymptotes of an Hyperbola, confider the annex'd Scheme, wherein it is evident (even by Infpection) that the oppofite Hyperbola's will always be alike, becaufe they will always have the fame Tranfverfe Diameter common to both, Ec. (fee Secf. I, of this Chap.) Alfo, that the middle Point, or common Center of the Ellipfst, is the common Center to all the four conjugal Hyperbola's.


And the two Diagonals of the Right-angled Parallelogram, which circumferibes the Ellipfis (or is infrrib'd to the four Hyperbola's) being continued, will be fuch Afynptotes to thofe Hyperbola's as are defined Chap. 1, Sect. 5, Defin. 4.

Sect. 6. To draw the alpuptotes of any 耳pperbola, \&e.
Having found the Latus Rectum (by Sect. 2.) and the Conjugate Diameter in $n S N$ in its true Pofrtion, by Sect. 3. Then through the Center $C$ of the Hyperbola, and the extream Points $n N$ of its Conjugate Diameter, draw two Right Lines, as $C N$ and $C n$, infinitely continued (as in the following Figure) and they will be the Afymptotes required. That is, they are two fuch Right Lines as, being infinitely extended, will continually incline to the Sides of the Hyperbola, but never touch them.

## Demonfration.

Suppofe the Semi-ordinates $a b$ and $A B$ to be rightly apply'd to the Axis $T A$; and produced both Ways to the Aymptotes, as at $f g$ and $F G$; then will the $\triangle C S N, \triangle C a g$, and $\triangle C A G$ be alike.

Let $d=C S=\tau C$. And $L=$ the Latus Rectum; as before, Put $\left\{\begin{array}{l}e=S a \\ y=S A\end{array}\right\}$ the Abciffa. Then $\left\{\begin{array}{l}d+e=C a \\ d+y=C A .\end{array}\right.$
Then $\mid d: S N:: d+e: a g . v i z . C S: S N:: C a: a g$ in $\square ' s \quad 2 d d: \square S N:: d d+2 d e+e e: \square a g$

| But | 3 | $d=\square S N$. per Sect. 3. <br> Again |
| ---: | :--- | :--- |
| 4 | $\frac{d d L+2 d e L+e e L}{2 d}=\square a g$ |  |
| $2 d: L:: 2 d e+e e: \square a b$, per Sect. 2. |  |  |

$5 \quad 6 \quad \frac{2 d e L+e \varepsilon L}{2 d}=\square a b$ Che
But $\left.\begin{array}{rl}a g+a b & =b f \\ a g-a b & =b g\end{array}\right\}$ per Fig. $8 \times 9$ 10. $\square a g-\square a b=b f \times b g$ 7, $1011 b f \times b g=d L$ Again 12 dd: $\square S N:: d d+2 d y+y y: \square A G$ That is, $\square C S: \square S N:: \square C A: \square A G$ $3,12 \because 13 \frac{d d L+2 d y L+y y}{2 d}=\square A G$

But 14 2d: $L:: 2 d y+y y: \square A B$, per Sect. 2.
14
$\frac{2 d y L+y y L}{2 d}=\square A B$

$$
\begin{aligned}
& 17 \times 1819 \square A G-\square A B=B F \times B G \\
& \text { II, } 820 \because \because 2 \mathrm{I} b g=\frac{\frac{1}{2} d L}{b f} \text {. And } B G=\frac{\frac{x}{2} d L}{B F}
\end{aligned}
$$

From the laft Step 'tis evident, that the A/ymptotes are nearer the Hyperbola at $G$ than at $g$, and confequently will continually approach to its Curve : For $B F) \frac{1}{2} d L$ ( $=B G$ is lefs than $b f$ ) $\frac{1}{2} d L$ (二bg, becaure the Divifor $B F$ is greater than the Divifor $b f$; and it mutt needs be fo where-ever the Ordinates are produc'd to the Afymptotes, from the Nature of the Triangles.

Again; From the 7 th and 16 th Steps 'tis evident, that the Afymptotes can never really meet and be co-incident with the Curve of the Hyperbola, although both were infinitely extended, becaufe $\frac{x}{2}$ $d L$ will always be the Difference between the Square of any Semiordinate and the Square of that Semi-ordinate, when 'is produc'd to the Afymptote.

## Conjeczary.

From hence it follows, that every Right Line which pafies thro' the Center and falls within the Afymptotes, will cut the Hyperbola; and all fuch Lines are call'd Diameters (as in the Ellipfis) becaure the Properties of the Hyperbola and Ellipfis are the fame.

Note. Every Diameter, both in the Ellip/is, Parabola, and Hy. perbola, hath its particular Latus ReEtum and Ordinates; which (fhould they be diftinetly handled, and the Effection of all fuch Lines as relate to them, as alfo the Nature and Properties of fuch Figures as may be infcribed and circumfcribed to all the Stctions; with the various Habitudes or Proportions of one Hyperbola to another, $\Xi^{\circ}$.) would afford Matter fufficient to fill a large Volume: But thus much may fuffice by way of Introduction; I hall therefore defift purfuing them any farther, being fully fatisfied, that, if what I have already done be well underftood, the reft muft needs be very eafy to any one that intends to proceed farther on that ub. ject.

# A N <br> <br> INTRODUCTION 

 <br> <br> INTRODUCTION} TO THE

## Mathematicks.

## PARTV.

THE Method of finding out any particular Quantity (viz. either any Line, Superficies, or Solid) by a regular Progreffion, or Series of Quantities continually approaching to it, which, being infinitely continued, would then become perfectly equal to it; is what is commonly call'd Arithmetick of Infinites; which I fhall briefly deliver in the following Lemma's, and apply them to Practice in finding the fuperficial and folid Contents of Geometrical Figures farther on.

> LEMMAI.

If any Series of equal Numbers (reprefenting Lines or other Quantities) as, 1. 1. 1. 1. Eoc. or 2.2.2.2. \&ic. or 3. 3. 3. 3. $\underbrace{\circ} c_{0}$ if one of the Terms be multiply'd into the Number of Terms, the Product will be the Sum of all the Terms in the Series.

This is fo very plain, and eafy to be underftood, that it needs no Example.

> LEMMAI.

If the Series of Numbers in Arithmetick Progreffion begin with a Cypher, and the common Difference be I ; as, 0. 1. 2.3.4. פic. (reprefenting a Series of Lines or Roots beginning with a Point) if the lait Term be multiply'd into the Number of Terms, the Product will be double the Sum of all the Series.

That is, putting $L=$ the laft Term, $N=$ the Number of Terms, and $S=$ the Sum of all the Series:

## $39^{8}$ The Aritymetick of Indinites, Part V.

Then will $N L=2 S$. Confequently, $\frac{1}{2} N L=S$.
viz. one Half of fo many times the greateft Term as there are Numbers of Terms in the Series.
Thus $\frac{0+1+2+3+4}{4+4+4+4+4}=\frac{10}{20}=$ the Sum of the Series $=\frac{x}{2} N L$.
And this will always be fo, how many Terms foever there are, by Comfect. 1, Page 185.

## L E M M A III.

If a Series of Squares whofe Sides or Roots are in Arithmetick Progreffion, beginning with a Cypher, Es'c. (as in the laft Lemma) be infinitely continued; the lift Term, beiri multiply'd into the Numbers of Terms, will be Triple to the Sum of all the Series, vix. $N L L=3 S$, or $\frac{1}{3} N L L=S$.
That is, the Sum of fuch a Series will be one Third of the laft or greateft Term, fo many times repeated as is the Number of Terms in the Series.

Inflances in the Square Numbers.

1. $\left\{\frac{0+1+4}{4+4+4}=\frac{5}{12}=\frac{1}{3}+\frac{1}{12}\right.$
2. $\left\{\frac{0+1+4+9}{9+9+9+9}=\frac{14}{30}=\frac{7}{18}=\frac{1}{3}+\frac{1}{18}\right.$
3. $\left\{\frac{0+1+4+9+16}{16+16+16+16}=\frac{30}{80}=\frac{3}{8}=\frac{9}{24}=\frac{1}{3}+\frac{1}{24} 8 c\right.$.

From thefe Inftances 'tis evident, that as the Number of Terms in the Series does increafe, the Fraction or Excefs above does decreafe, the faid Excefs always being $\frac{1}{6 N-6}$; which, if we fuppofe the Series to be infinitely continued, will then become infinitely fmall, viz. in Effect nothing at all. Confequently, NLL. may be taken for the true or perfect Sum of fuch an infinite Series of Squares.
LEMMA IV.

If a Series of Cubes, whofe Roots are in Arithmetick Progreffion, beginning with a Cypher, $\xi^{\circ} c$. (as above) be infinitely continu'd, the Sum of all the Series will be ${ }^{\text { }} N L L L=\mathrm{S}$.
That is, one Fourth of the laft or greateft Term fo many times repeated as is the Number of Terms.

## Infances in Cube Numbers.

$$
\text { If 0. I . } 2 \cdot 3 \cdot \varepsilon_{6} \text {. be the Roots of the Cubes. }
$$

Then $1 .\left\{\frac{0+1+8+27}{27+27+27+27}=\frac{36}{108}=\frac{4}{12}=\frac{1}{4}+\frac{1}{12}\right.$
2. $\left\{\frac{0+1+8+27+64}{64+64+64+64+64}=\frac{100}{320}=\frac{10}{3^{2}}=\frac{5}{16}=\frac{1}{4}+\frac{1}{16}\right.$
3. $\left\{\begin{array}{l}0+1+8+27+64+125 \\ 125+125+125+125+125+125\end{array}=\frac{225}{750}=\frac{45}{150}=\frac{3}{10}=\frac{6}{20}=\frac{1}{4}+\frac{1}{20}\right.$

From thefe Examples it plainly appears, that, as the Number of Terms in the Series increafes, the Fraction or Exclis above $\frac{7}{4}$ decreafes, the Excefs being always $\frac{1}{4 N-4}$; which, if we fuppofe the Series to be infinitely continued, will become infinitely fmall, or rather nothing; as in the laft Lemma. Confequently, $\frac{1}{4} N L$ $L L$ may be taken for the true and perfect Sum of all the Terms in fuch an infinite Series of Cubes.

## LEMMAV.

If a Series of Biquadrates, whofe Roots are in Arithmetick Progreffion, beginning with a Cypher, $\mathcal{E}^{\circ} \mathrm{C}$. (as before) be infinitely continued, the Sum of all the Terms in fuch a Series will be $\frac{1}{5} N L^{4}$.

The Truth of this may be manifefted by the like Procefs, as in the foregoing Lemma's, and fo on for higher Powers. But if any one defires a farther Demonftration of thefe Series, he may (I prefume) meet with ample Satisfaction in Dr. Wallis's Hiftory of Algebra, Chap. 78 and 79, wherein the Doctor concludes with thefe Words :
" Thus having fhew'd, that in the Progreffion of Laterals (oz © Arithmetical Proportionals) beginning at 0 , the Sum of 2, 3, 4, " 5,6 Terms, is always equal to half of fo many times the great" eft; and there being no Pretence of Reafon why we thould © then doubt it in a Progreffion of $7,8,9,10, \mathfrak{E}^{\circ} c$. we conclude "6 it fo to be, tho' fuch Number of Terms be fuppos'd infinite.
"Again; in a Progreffion of their Squares having thew'd, that " in 2, 3, 4, 5, 6 Terms the Aggregate is always more than one "Third of fo many times the greateft, and the Excefs always fuch os aliquot
of aliquot Part of the greateft, as is denominated by fix times the "Number of Terms wanting 1. (As, if the Terms be 2, "6 it is $\frac{1}{3}+\frac{1}{6}$; if three, it is $\frac{1}{3}+\frac{1}{12}$; if 4 , it is $\frac{1}{3}+\frac{1}{16}$; if 5 , ss it is $\frac{1}{5}+\frac{1}{27}$ of fo many times the greateft Term, and fo onward)
"s we may well conclude (there being no Pretence of Reafon "s why to doubt it in the reft) that it will be fo, how many foever
"s be fuch Number of Terms. And becaufe fuch Excefs, as the
©s Number of Terms do increafe, will become infinitely frnall (or
©s lefs than any affignable) we conclude (from the Method of Ex-
"s hauftions) that, if the Number of Terms be fuppos'd infinite,
sc fuch Excefs muft be fuppos'd to vanifh, and the Aggregate of
©s fuch infinite Progreffion fuppos'd equal to $\frac{1}{3}$ of fo many times
" 6 the greateit.
"6 In like manner having prov'd that fuch Progreffion of Cubes
66 doth (as the Number of Terms increafe) approach infinitely near
"6 to $\frac{1}{4}$ of fo many times the greateft, and of Biquadrates to $\frac{1}{5}$, and
"f fo of Surfolids to $\frac{1}{6}$ of fo many times the greateft, and fo on-
" wards as we pleafe to try; and there being no Pretence of Rea-
" fon why to doubt it as to the reft, we may take it as a fufficient
*6 Difcovery, that (univerfally) the Aggregate of fuch infinite
" Progreffion is equal (or doth approach infinitely near) to fuch
" a Part of fo many times the greateft, as is denominated by the
" Exponent (or Number of Dimenfions) of fuch Power (as is
" that according to which the Progreffion is made) increas'd by
" 1, namely, of Laterals $\frac{1}{2}$; of Squares $\frac{1}{4}$; of Cubes $\frac{1}{4}$; of Bi-
" quadrates $\frac{1}{5}$; of fo many times the greateft) and fo onwards " infinitely."

This Difcourfe of the Doctor's I thought convenient to infert, fuppofing it may give fome Satisfaction to the Learner, to hear fo Great a Man as Dr. Wallis's Argument about the Truth of thefe Series, which I have briefly deliver'd in the 'foregoing Lemma's.

## LEMMAVI.

If any two Series or Ranks of Proportionals have the fame Number of Terms (whether Finite or Infinite) it will always
be $\left\{\begin{array}{l}\text { As the firt Term of one Series: is to the firft Term of the } \\ \text { other Series :: fo is the Sum of all the Terms in the one Series: } \\ \text { to the Sum of all the Terms in the other Series. }\end{array}\right.$
apply'd to Superficies and Soling. 401

As in thefe Numbers, |  | 6 | Or thefe Numbers, | 4 | 5 |
| :--- | :--- | :--- | ---: | ---: |
| 2 | 6 | 12 | 15 |  |
| 3 | 9 | 36 | 45 |  |
|  | 4 | 12 | 108 | 135 |
| 5 | 15 | 324 | 405 |  |
|  | 6 | 18 | 972 | 1215 |

That is, $1: 3:: 21: 63$ And $4: 5:: 1456: 1820$ E ${ }^{\circ}$.
The Application of thefe Lemma's to Geometrical Quantities, viz. to Lines, Superficies, and Solids, wholly depends upon granting the following Hypothefes.

## The 学epotyefis.

I. That every Line is fuppos'd to confift (or be compos'd) of an infinite Series of equidiftant Points.
2. A Surface (viz. the Area of any Figure) to confift of an infinite Series of Lines, either ftreight or crooked, according as the Figure requires.
3. A Solid to confift of an infinite Series of Plains, or Superfiaies, according as its Figure requires.

Not that we fuppofe Lines, which have really no Breadth, can fill a Space or Superficies ; or that Plains, which have not any Thicknefs, can conftitute a Solid: But by what we here call Lines are to be underfood fmall Parallelograms (or other Superficies) infinitely narrow, yet fo as that their Breadths, being all taken and put together, muft be equal to the Figure they are fuppos'd to fill up. And thofe Plains or Superficies, which are here faid to conftitute a Solid, are to be underftood infinitely thin; yet fo as that their Depths or Thickneffes (which are hereafter alfo called Lines) being all taken together, muit be equal to the Height of the propos'd Solid. Now, in order to render this Hypothefis as eafy for a Learner to underftand as I can, I fhall here propofe a very plain and familiar Example; Viz. Let us fuppofe any Book to be compos'd (or made up) of $100,200,300$ (more or lefs) Leaves of fine Paper; fuch a Book, being clofe put together, will have Length, Breadth, and Depth or Thicknefs, and therefore may (not improperly) be called a Solid; and each of its Edges (being evenly cut) will be a Superficies compos'd of a Series of fmall Parallelograms, every one of their Breadths being only the Edge of a fingle Leaf of Paper; and if we conceive the Thicknefs of every one of thofe leaves to be divided into 10 , or

## 402 The arithmetuck of infinites,

100 , or $1000, \varepsilon_{c} c$. they will then become fuch a Series of infinitely fmall Lines as are (by the Hypothefis) faid to compofe or fill up a Superficies. And all the Superficies of thofe infinitely thin or divided Leaves of Paper will become fuch a Series of Plains, or Superficies, as are faid to conftitute a Solid, viz. fuch a Solid as the Bignefs and Figure of that Book.

Now according to this Idea of Lines, Superficies, and Solids, one may, without the leaft Prejudice to any Demonftrationy admit of the following Definitions and Theorems.

## Difinitions.

I. The Area's of Squares, and all other Parallelograms, are compos'd or fill'd up with an infinite Series of equal Right Lines.
II. The Area of every plain Triangle is compos'd of an infinite Series of Right Lines parallel to its Bafe, and equally decrealing until they terminate in a Point at the vertical Angle.

IHF. The Area of a Circle may be compofed either of an infinite Series of concentrick or parallel Circles, or of an infinite Series of Chord Lines parallel to its Diameter, or of an innumerable Multitude of Sectors.
IV. The Area of an Ellipfis may be compos'd either of an infirite Scries of Ordinates rightly apply'd, or of an infinite Serics of Right Lines parallel to its Tranfiverfe Diameter.
V. The Area's of the Parabola and Hyperbola are compos'd of an infinite Series of Ordinates; or may allo be compos'd of Right Lines parallel to its Axis, $\mathcal{F}^{\circ} 6$.
VI. A Prifin is a fulid Body contain'd or included within feve-- 4 equal Parallelograms, having its Bafes or Ends equal and alike; and it is generally nam'd according to the Figuse of its Bafe : That is,
VII. A Cube (or Solid like a Dye) is a Prifm bounded or included with fix equal fquare Plains.
VIII. A Parallclopipedon is a Prifm that hath its Sides bounded or included within four equal Parallelograms and two fquare Bafes or Ends.

1X. A Cyiinder (or Solid, like a Rolling-ftone in a Garden) is -nly a round Prifm, having its Bafes or Ends a perfect Circle.

## apply'd to Superfictes and Solids. 403

X. The Solidity of every Prifm is compos'd of an infinite Series of equal Plains, parallel and alike to that of its Bafe.
XI. A Pymamid is a Solid bounded or included within feveral plain Triangles fet upon any Polygonous Bafe, having their vertical Angles all meeting together in a Point, called the Vertex, and takes its Name from the rigure of its Bafc, viz. if it has a fquare Bafe, 'tis call'd a fquare Pyramid ; if a triangular Bafe, 'tis call'd a triangular Pyramid, $\xi^{\circ}$ c.
XII. A Cone is only a round Pyramid, which hath been already defined in Page 355, $\mathrm{E}^{\circ} \mathrm{c}$.
XIII. The Solidity of every Pyramid is compos'd or conftituted of an infinite Series of Plains, parallel and alike to that of its Bafe, equally decreafing until they terminate in a Point at the Vertex.
XIV. A Spbere or Globe, (viz. a Ball) is a Solid bounded or included within one regular Superficies, being form'd or generated by the Rotation of a Semi-circle about its Diameter (call'd the Axis of a Sphere) and its Solidity is compos'd or conftituted of an infinite Series of concentrick Circles, whofe Diameters are the Chords of that Circle by which it was form'd.
XV. A Spheroid (or Egg-like Figure) is a Solid bounded with -one regular Superficies, form'd by the Rotation of a Semi-ellipfis about its Tranfverfe Diameter (call'd the Axis of the Spheroid) and its Solidity is conftituted of an infinite Series of concentrick Circles, whofe Diameters are the Urdinates of that Ellipflis by which it was form'd.
XVI. There is another Sort of Solid call'd an Oblate Spheroid, being formed by the Rotation of an Ellipfis about its Conjugate Diameter, and it is like a flat Turnep.
XVII. If a Semi-parabola be turn'd about its Axis, 'twill form a Solid call'd a Parabolick Conoid, being compos'd or conftituted of an infinite Series of Circles, whofe Diameters are the Ordinates of a Parabola.
XVIII. If a Parabola be turn'd about its Bafe, or greateft Ordinate, 'twill form a Solid call'd a Pyramidoïa, but moft commonly a Parabolick Spindle, which will 'be conftituted of an infinite Series of Circles, whofe Diameters are Right Lines parallel to the Parabola's Axis.
XIX. If an Hyperbola be turn'd about its Axis, 'twill form a Solid call'd an Hyperbolick Conoid, being conftituted of an infinite Series of Circles, whofe Diameters are the Ordinates of the Hypertola.
XX. The curve Superficies of all circular Solids (viz. Cylinders, Cones, Spheres, $\xi^{\circ}$ c.) are compos'd of an infinite Series of the Peripheries of thofe Circles which conftitute their Solidities.

Upon thefe Definitions are grounded all the following Theorems; and therefore, if they were diligently compar'd with their refpective Figures, it muft needs be of great Help to the Learner, and would render all that follows very eafy; wherein I thall begin with what hath been already demonftrated, by way of introducing the reft.

## THEOREMI.

The Aren of every Right-angled Parallelogram is obtain'd by multi* plying the Length into its Breadth.

That is, $B D \times F B=$ the Area of the Parallelogram $B D F G$, by Lemma I, compar'd with Definition I.

## Example.

Suppofe $B D=26$, and $F B=9$, then $26 \times 9=234$ the Area. See Prob. 1, Page 339.


## THEOREMII.

The Area of every plain Triangle is equal to balf the Area of its circumfcribing Parallelogram. That is, $\frac{B D \times C A}{2}=$ the Area of $\triangle B C D$, in the following Figure.

## idemonftratioit.

Suppofe the Perpendicular $C A$ to be divided into an infinite Number of equal Parts, as at the Yoints $a, a, a, \& c$. and through thofe Points there were drawn Right Lines parallel to the Bafe $B D$; (viz. bad, bàd, bad, \&c.) then will thofe Lines be a Series of Terms in Arithmetick Progref-
 fion beginning at the Point $C$ (viz. $0, b d, 2 b d, 3 b d, \& c$. as is evident by the Figure, wherein $B D$ the greateft $T \mathrm{crm}=L$, and $C A$ the Number of Terms $=N$.

But $\frac{1}{2} N L=S$, by Lemma 2. And $S=$ the Triangle's Area by Definition 2. Q. E. D.

Example. Let $B D=26$, and $C A=9$, as above; then $\frac{26 \times 9}{2}=117$, or ${ }^{6 \frac{1}{2}} \times 9=117$. Or thus, $26 \times \frac{9}{2}={ }^{11} 7$, the Area requir'd. [See Problem 3, Page 330.]

> THEOREM IIF.

The Peripheries of Circles are in Proportion one to another as their Diameters are.

## memonfration.

Let the Periphery of a Circle be divided into any Number of equal Arches by Right Lines drawn from the Center (viz. Radii) fuppofe 'em 8, as in the annexed Figure, wherein $A B$ is one of them ; then, if thro' any Point in the Radius there be drawn a concentrick or parallel Circle, its Periphery will alfo be divided into 8 equal Arches by thofe Radii, one whereof will be $a b$, and the $\triangle C a b$ will be like to $\triangle C A B$,
 Therefore $C a: a b:: C A: A B$, or $C a: C A:: a b: A B$, confequently $2 C a: 2 C A:: 8 a b: 8 A B$. But $2 C a=d a$ the Diameter of the Circle, whofe Periphery is $8 a b$; and ${ }_{2} C A$ $=D A$, the Diameter of the Circle, whofe Periphery is $8 A B$. Therefore, $E_{6}{ }_{6}$ as by the Theorem.

## Example.

In Chapter 6, Part III, it was found, that, if the Diameter of a Circle be 2, its Periphery will be $6,2831853, \mathcal{F}^{\circ}$. Therefore, 2:6,2831853, छoc. :: $1: 3,14159265$, שicc. the Periphery of the Circle whofe Diameter is $\mathbf{I}$.

## Corollary.

Hence it follows, that becaufe Unity, or 1 , may be made the firft Term in the Proportion, therefore $3,14159265,8^{\circ} \mathrm{C}$. may be made a conftant or fettled Factor; which, being multiply'd into any propos'd Diameter, will produce the Periphery of that Circle.

Note, Inftead of $3,14159265, \xi^{\circ} 6$. it may be fufficient to take enly 3,1416 .

## 406 The artobuetich of 引nfintes, Part V.

Or, in whole Numbers, the Proportion may be,
As $7: 22$ : : Diam. : Periphery $\}\left\{\begin{array}{l}\text { thefe Numbers may ferve, }\end{array}\right.$ Or $113: 355:$ : Diam. : Periphery $\}\{$ and are often ufed in com-

## THEOREMIV.

The Area of any Sector of $a$ Circle is equal to balf the Rectangle of the Radius into its Arch. That is, $\frac{C A \times A B}{2}=$ the Area of $A C P$.

## Demonftratioit.

Suppofe the Radius $C A$ to be divided into an infinite Series of equidiftant Points, as $a, e, y$, \&cc. and thro' thofe Points there were drawn concentrick or parallel Arches, as $a b, e d, y f, \& c$. then they will be a Series of Arches in Arithmetick Progreffion, beginning at the Point $C$ (viz. o, $1,2,3, \varepsilon^{\circ}$ c.) as plainly appears by the Figure, wherein the greateft Term is $A B=L$, and Number of Terms is $C A=N$. But $\frac{1}{2} N L=S$, the Sum of all the Series, by Lemma 2, and $S$ = the Sector's
 Area, by Definition 3.
Q. E. D.

Let the Radius $C A=12$, and the Arch $A B=8$, then $\frac{12 \times 8}{2}$ $=48$. Or $\frac{12}{2} \times 8=48$. Or ${ }_{\frac{8}{3}}^{8} \times 12=48$, the Area of the sector $A C B$.

> THEOREMV.

The Area of every Circle is equal to balf the Rectangle of the Radius into its Periphery. Tbat is, according to Archimedes, a Circle is equal to a Right-angled Triangle, whofe Sides containing the Rigbt-angle are equal, one to the Radius, and the other to the Perimeter of that Circle. Pro. I. de Dimenfione Circuli.
The Truth of this Theorem may be eafily deduced from the 1aft, thus: If we fuppofe the laft Sector to be one Eighth-part of a Circle, then it follows, that $\frac{8 A B \times C A}{2}=4 A B \times C A$ will be the Area of the whole Circle. But $4 A B=$ half the Circle's Periphery, and $C A=$ half its Diameter; therefore, $\mathcal{E}^{\circ} c$. as per Theorem.

## Example.

If the Diameter be Unity, or 1 , the Periphery will be 3,14159265 Eic. by Theorem 3. Then $\frac{3,14159265}{2} \times \frac{1}{2}=0,78539816$, E'c. $_{6}$ ( or 0,7854 for common Ufe) will be the Area of that Circle.

## Scholium.

From hence naturally flows the following Proportion between the Square and its inferib'd Circle.
Proportion. $\left\{\begin{array}{l}\text { As the Perimeter (viz. the Sum of the four Sides) } \\ \text { of any Square }: \text { is to its Area }:: \text { fo is the Peri- } \\ \text { phery of the infrrib'd Circle }: \text { to its Area. }\end{array}\right.$
That is, fuppofing $A B=D=$ the Side of the Square, and the Diameter of its inferib'd Circle; then ${ }_{4} D=$ the Perimeter, $D D=$ the Area of the Square, and $3,1416 D=$ the Periphery of the Circle, by Theorem 3 . But $4 D: D D:: 3,14,16 D: 0,7854 D D$ $=$ the Circle's Area. And if $D=1$, then $4 D=4$, and $D D=1 \times 1=1$, and the Periphery will be 3,1416 . Then 4:1::1:0,7854 \&c. as in the Example above. And from hence may be eafily
 deduced the following Theorems.

## THEOREM-VI.

The Area's of all Circles are in Proportion one to another as the Squares of their Diameters. (2, e. 12.)
For if $D=$ the Diameter of one Circle, and $d=$ the Diameter of another Circle, then will $0,7854 D D$ be the Area of one Circle, and $0,7854 d d$ will be the Area of the other Circle; as above. But $0,7854 D D: 0,7854 d d:: D D: d d$. Or thus, let $D$ Dia Diameter, and $P=$ the Periphery of one Circle ; $d=$ the Diameter, and $p=$ the Periphery of another Circle;


$$
4 \div d
$$

408 The arithmetich of Infinites, Part V .

$$
\begin{array}{r|r|l}
4 \div a & 6^{\prime} p=\frac{4 a}{d} \\
\text { But } & 7 & P: p:: D: d, \text { per Theorem } 3 . \\
5,6,7 & 8 & D: d:: \frac{4 A}{D}: \frac{4 a}{d} \\
8 & \because & 9 \\
9, \text { Analogy } & & 4 D D=4 d d A, \text { that is, } D D a=d d A \\
& D D: A:: d d: a, \text { or } A: a:: D D: d d
\end{array}
$$

## Corollary.

Hence it follows, that becaufe the Square of 1 is (viz. $1 \times I=1$ ) and 0,78539816, Ec. or 0,7854 is the Area of the Circle whofe Diameter is I (as before) therefore it will be 5: $0,7854:$ : fo is the Square of any Circle's Diameter : to its Area. And becaufe I is the firf Term in the Proportion, therefore 0,7854 may be made a conffant Factor; which, being multiply'd into the Square of any propos'd Diameter, will produce the Area of that Circle.

Note, The four laft Theorems do plainly thew the Reafon of all the common or practical Problems about a Circle, which, for the Learner's farther Satisfaction, I have here inferted together. Suppofing as before,
That $\left\{\begin{array}{l}D=\text { the Diameter } \\ P=\text { the Periphery } \\ A=\text { the Area }\end{array}\right\}$ of any propofed Circle.

|  | 1 | $\begin{aligned} & 1: 3,1416:: D: P \text {. per Theorem } 3 . \\ & 3,1416 D=P . \\ & \left\{\begin{array}{l} \text { Suppofe } D=32 . \\ \text { the Peripbery. } \end{array} \text { Then } 3,1416 \times 32=100,5312\right. \end{aligned}$ |
| :---: | :---: | :---: |
| 3 <br> Examp. Then | 3 | Probl. 2. D being given, to find A. 1:0,7854::D $D: A$, per Theorem 6. $0,7854 D D=A$ <br> Suppofe $D=32$ (as before) <br> $D D=3^{2} \times 3^{2}=1024$ <br> $0,7854 \times 1024=804,2496$, the Area requir'd. |
| $\begin{gathered} \text { And } \\ \\ \hline \div \end{gathered}$ | 5 | Probl. 3. P being given, to find D . $\left.D=\frac{P}{3,14^{16}}\right\} \text { Or }\left\{\begin{array}{l} \text { becaufe } \begin{array}{l} 3, \pi^{\frac{1}{4}} \sqrt{6} \\ \text { therefore } 0,3183 \end{array}=0,3^{183}=D . \end{array}\right.$ <br> This, being only Converfe to the firft, needs no Exam. |



Thefe fix Problems contain all the Variety that can be propofed about finding the Periphery, Diameter, and Area of any Circle.

But if it be required to find the Area of any Segment, or Part of a Circle cut off by a Chord, that Work will require a farther Confideration.

Firf, As to the Data there muft always be given the Diameter; or, either the Periphery or Area of the Circle, in order to find the Diameter.

Secondly, There muft alfo be given, either the Chord which is the Bafe of the Segment, or the verfed Sine, which is the Height of the Segment. That is, either $B G$, or $A F$, in the following Scheme, muft be given, that fo the Area of the $\triangle B C G$ may be found. Then it's evident (by the Figure) that, if the Area of the $\triangle B C G$ be taken from the Area of the $S_{e c t o r ~}^{C B A G}$, the Remainder will be the Area of the Segment BAG. And if the Area of the Segment $B A G$ be taken from the whole Area of the Circle, the Remainder will be the Area of the other Segment $D B G$.

> Gg g

Exam:

## Example in Numbers.

Let there be given $D A=3^{2}$, as in Prob. I. and the verfed Sine $A F=6$; then $\frac{1}{2} D A=B C=A=16$, and $C A-A F=C F=10$. But口 $B C$ $-\square C F=\square B F$. Confequently $\sqrt{\square B C-\square C F}=B F$, vix. $\sqrt{ } 155$ $=12,49=B F$.

Then, by the Doctrine of plain Triangles, the Arch $B A=\leftarrow B C A$ may
 be found in Degrees and Decimal Parts. Thus $B C:$ Radius :: $B F:$ Sine $\leftarrow B C F=51,3^{1}$ Degrees. And then it will always hold in this Proportion;
Viz. $\left\{\begin{array}{l}\text { As the Circle's Periphary in Degrees: is to its Periphery in } \\ \text { equal Parts (according to the Dimenfions taken) }:: \text { So is } \\ \text { the in Degrees (viz. } \subset B C A \text { ): to the fame Arch in } \\ \text { equal Parts. }\end{array}\right.$
That is, $360^{\circ}: 100,53^{12}:: 51,3^{1^{\circ}}: 14,3284=B A$. Then $14,3284 \times 16=229,2544$, the Area of the Secior BCAG; and $12,49 \times 10=124,9$, the Area of the $\triangle B C G$. Their Difference 104,3544 = the Area of the Segm. B. $A G$.

Or the Area of any Segment may be otherwife found (as molt ufually it is) by a Table of the Segments of a Circle, whofe Area is Unity, or 1. The Conftrustion or making of fuch a Table is very well laid down in Mr. Darie's Book of Gauging, Cbap. 9. which he performs in this Problem.

## PROBLEM.

In a Circle whofe Area is Unity, and its Diameter cat by Chord Lines into 1000 equal Parts, to find the Segment to any verfed Sine propos'd, not exceeding 500 of thofe equal Parts.

1. Multiply the verfed Sine propos'd by 0,002 , and fubtract the Product from an Unit or $\mathbf{x}$.
2. This Remainder you fhall feek in the common'Table of Nataral Sines, (the Arch being divided into Degrees and Centefimals) which being found, let its $C a-a x c b$ be doubled, and called $A$.
3. You mult find the correfpondent sine to $A$; which Sine being found, you may call $S$, and then it holds 6,2831853 ) $0,017453^{2}$ $925 A-S$ ( $=$ the Segnent required.

Now this Segment being thus found, if you fubduct it from an Unit, you have the Co- Segment, \&c.

Note, Notwithflanding what has been faid in the fecond Precept of this Problem, it very often falls out that the Remainder there fpoken of cannot be truly found in the Table of Natural Sines; therefore in this Cafe my Advice is, that you make two Operations, one with a Sine the next greater, and one with a Sine the next lefs; and in fo doing you will be fure to have the Segment requir'd bounded between tie Refults of thofe two Operations.

Example, Let it be propos'd to find the correspondent Segment to the verfed Sine 263.
Firft, $263 \times 0,002=0,526$, and $x-0,526=0,474$, its Arch is $28,29^{\circ}$ being lefs than juft; its Complement is $61,71^{\circ}$, which, being doubled, is $123,42=A$. Then ,OI $74533 A=2,154086286$

$$
\begin{aligned}
= & 0,8346556=S \text { the Sine of } A \\
6,2831853) & 1,319430686(0,209993 \text { the Segment. }
\end{aligned}
$$

Now I make a fecond Work.

263 being multiplied with 0,002 is 526 . and $1-526=0,474$ its Arch is $28,30^{\circ}$ being greater than juft; and its Complement is $61,70^{\circ}$, which being doubled is $123,4=A$.
Then $0,0174533 A=2,153737^{2}$

$$
-0,8348478=S \text { the Sine of } A
$$

$$
6,2831853) \mathrm{x}, 3188894(0,209907 \text { the Segment. }
$$

So you fee by thefe two Operations that the Segment is bounded, and 'tis very probable it may be 0,20995 .

But to abbreviate this large Factor, and this large Divifor, I thall here infert two Tables of them, which will be ready for Ufe, and exact enough too.

| . | F |
| :---: | :---: |
| 6,2832 | ,0174533 |
| 12,566+12 | , 0349066 |
| 18,8495 3 | ,0523599 |
| 25, 12274 | ,0698132 4 |
| 31,4159 | ,0872665 5 |
| 37,6991 6 | ,1047197 |
| 43,9823 | ,1221730 |
| 50,2655 | , 1396 |
| [56,548719] | 1,1570796l9 |

Thus far Mr. Darie, which I have here inferted to thew the Learner how, by the Help of thefe two Tables, and a Table of Natural Sines, he may eafity make a Table of Segments, whofe Ufe thall be fhewed farther on, viz. when I come to trear of practica! Gauging. In the mean Time I fhall here lay down another Method to find the Area of any Seomont of a Cir-

## 412 The Arithmetick of $\mathfrak{y}$ ninites,

cle (very near) by a new Theorem, without the Help either of a Table of Sines or Segments, having the fame Data as before in Page 404.
Viz. Let $\left\{\begin{array}{l}R=\text { the Radius, or } \frac{1}{2} \text { Diameter of the given Circle. } \\ d=\text { the Difference between the ver }{ }^{2} \text { Sed Sine and Radius. }\end{array}\right.$ $C=$ half the Chord of the Segment's Bafe.
Theorem. $\left\{\frac{2 \frac{1}{3} R R-1 \frac{1}{3} R d-d d}{1 \frac{1}{2} R+d} \times C=S\right.$, the Area of the Segm.
Example, Suppofe $R=B C=16, d=F C=10$, and $C=$ $B F=12,49$; as before.
Then $2 \frac{\div}{3} R R=597,3333 . \quad 1 \frac{1}{3} R d=213,3333 . d d=100$ $-3^{1} 3,3333=1 \frac{1}{3} R d+d d$
I. $R+d=34284,0000(8,3529$. Lafly, $8,3529 \times 1249$ $=104,3^{276}$ the Area of the Segment $B A G$, as before.

## THEOREMVII.

As Squares are to the Area's of their infcribed Circles, fo are $P a-$ rallelograms to the Area's of their infcribed Ellipfes.
That is, $\left\{\begin{array}{l}\text { As the Square of the Diameter of any Circle : is to its }\end{array}\right.$ (jugate Diameters of any Ellipfis: to its Area.

## Dentonaration.

Circumfcribe any Ellipfis with a Circle; and fuppofe an infinite Number of Cbord Lines drawn therein, all parallel to the Conjugate Diameter, as thofe in the annexed Figure; then it will
 be $\{$ jugate Diameter of the Ellip is $::$ fo is $(B$ a $B)$ any Chord in the Circle : to $\left(\begin{array}{ll}b & a\end{array}\right)$ its refpective Ordinate in the Ellipfis.
For according to the Property of the Circle it is $I \overline{T S-T a} \times T_{a}=\square B a$ And by the Property of the Ellipfis it is $2 \square T C: \square N C:: \overline{T S-T a} \times T a: \square b a$ 1, 23 ロ $\bar{T} C: \square N C: \square B A: \square b a$ 3, Henct $4 \mathcal{T} C: N C:: B a: b a$
Confeq 52 TC: $2 N C:: 2 B a: 2 b a$
That is $6 D A: N n:: B a B: b a b$ Putg $D=2 \tau C$, and $d=2 N C$


Then $D: d::$ Chord $B a b$ : Ordinate $b a b$, \&cc.

But the Sum of an infinite Series of fuch Chords, as $B a B$, do conftitute the Area of the Circle, by Definition 3 : and the Sum of the like Series of their refpective Ordinates, as $k a b$, do conftitute the Ellip/is's Area by Definition 4. Therefore $D: d::$ Circle's Area: Ellipfos's Area, by Lemma 6. But $D: d:: D D: D d$. Whence it follows, that $D D:$ Gircle's Area : : Dd: Ellipfis's Area. Q. E.D. Confequently, as $\mathbf{I}:$ is to $0,7854::$ fo is the Rectangle or Product of the Tranfverfe and Conjugate Diameters of any Ellipfis: to its Area.

Example, Suppofe $T S=36$. and $N n=16$; then $36 \times 16=576$, and $576 \times 0,7854=45^{2}, 3904$ the Area of the Ellipfis.

## Corollaries.

1. Hence it is eafy to conceive, that the fquare Ront of the Rectangle or Product of the Tranfverfe and Conjugate Diameters will be the Diameter of a Circle whofe Area will be equal to the Ellipfis's Area, viz. $\sqrt{ } 576=24$ the Diameter of a Circle $=$ to the Ellipfis.
2. All Segments of an Ellipfis and its circumfcribing Circle (whofe Bafes are parallel to the Conjugate Diameter, and of the fame Height) are in Proportion one to another, as their Bafes are. That is, $B a b: b a b:$ Area Segment $B N B:$ Area Segment $b N b$; or IS:Nn:: Area Segment $B N B:$ Area Segment b $N b$.

## THEOREM VIII.

The Area of every Ellipfis is a mean Proportional between the Area's of its circumfcribing and infcrib'd Circles.

The Truth of this Theorem may be eafily deduced from the laft; for fuppofing $D=T S$, and $d=$ $N n$, as before; then it is already proved, that $D D: D d::$ circumfcribing Circle's Area : Ellipfis's Area. But $D D: D d:: D d: d d$. Therefore Ellipfis's Area : infcrib'd Circle's Area :: $D d: d d_{0}$ By Theorem 6.


Example, Let $T S=D=36$, and $N n=d=16$, as before; then $D D=1296$, and $d d=256$.

Then will $\left\{\begin{array}{l}1296 \times 0,7854 \\ =1017,8784\end{array}\right.$ the great Circle's Area
Suppofe $A=$ the Ellipfis's Area; then, according to the Theorem , it will be, $1017,8784: A:: A: 201,0624$. Ergo $A A=$ $1017,8784 \times: 201,0624=204657.07401216$. Confequently, $\sqrt{201657,07401216=452,3904=A \text {, the Area of the Ellipfss }}$ as before in the laft Example.

## Corollary.

From hence it follows, that all Segments of an Ellipfis and its infcrib'd Circle, whofe Bafes are parallel to the Tranfucle Diameter, and have the fame Height, are in Proportion one to another as the Area's of the Ellipysis and Circle are. That is, Area of Circle : Area of Ellipfis : : Segment $b N b:$ Segment $B N B$. Or, $N n: T S$ $\therefore:$ Area Segment $b \mathrm{Nb}$ : Area Segment $B N B$.

## THEOREM IX.

The Solid Content of any Primm (what Figure foever its Bare is of) is obtained by multiplying the Area of its Bafe inso its Height.

For Inftance, a Parallelopipedon (or fquare Prifm) is conftituted of an infinite Series of equal Squares; that of its Baje $B A$ being one of the Terms, and its Height $D B$, or $G A$, the Number of all the Terms. Confequently, the Area of $B A b a \times$ $D B=$ the Sum of all the Series (by Lemma 1.) which is the Solidity of the Parallelopipedon D B $G A$, by Definition 10 .

Example, Suppofe the Side of the Bafe B A $=16$ and the Heigbt $D B=42$; then will $16 \times 16=256$ be the Area of the Bafe, and $256 \times 42=10752$ the Solid Content of the Parallclopipedon D B GA.


In this Manner you may find the Solidity of all regular Polygonous Prifms, whofe Bafes (or Ends) are parallel and alike, what Form foever they are of, that is, whether their Bafes are Triangles, Pentagons, Hexagons, or Oezagons, \&xc.

## THEOREM X.

Every Pyranid is the third Part of the Prijm, that hath the Sams Bafe and Height with it (7. e. 12.)
That is, the Solid Content of the Pyramid BVA (in the laft Figure) is one Third of its circumferibing Prim $D B G A$.

## Demonfration.

For every Pyramid that hath a fquare Bafe (as $B A b a$, in the laft Figure) is conftituted of an infinite Series of Squares, whofe Sides or Roots are continually increafing in Arithmetick Progrefiow, beginning at the Vertex or Point $V$ (See Theor. 2.) its Bafe B A Ba; being the greateft Term $(=L L)$ and its perpendicular Height $V C$, or $D B$, is the Number of all the Terms $=N$; but $\frac{N L L}{3}=S$ the Sum of all the Series, by Lemma 3, and $S=$ the Solid Content of the Pyramid $B \vee A$, by Definition 13 .

Example, Suppofe the Side of a Pyramid's Bafe be $B A=\mathbf{1} 6$. and its Height be $V C=42$. Then $16 \times 16=256$ the Area of its Bafe $B A B a=a$, and $\frac{25^{6} \times 42}{3}=3584$. Or $\frac{35^{6}}{3} \times 42=$ 3584 or thus, $256 \times \frac{42}{3}=3584$, is the Solidity of that Pyramid $B V A$.

## Corollary.

From hence it will be eafy to conceive, that every Pyramid is $\frac{2}{3}$ of its circumfcribing Prifm, what Form foever its Bafe is of, vizo whether it be a Square, Triangle, Pentagon, \&c.

## THEOREM XI.

The Solid Content of every Cylinder is obtain'd by multiplying the Area of its Bafe into its Height.

For every Right Cylinder is only a round Prifm, being conftituted of an infinite Series of equal Circles; that of its Bafe or End being one of the Terms, and its Height $B D$ is the Number of all the Terms. Therefore the Area of its Bafe $B A$, being multiply'd into $D B$, will be its Solidity, by Lemma 1. viz. Let $D=$ $B A$, and $H=G A$. Then $0,7854 D D \times H$ = its Solidity.


## 416 The arithmetic of §nfinites, Part V .

Example, Let the Diameter of its Bafe be $D=16$, and its Height $H=42$. Then $1: 0,7854:: 16 \times 16=256: 201,0624$ the Area of its Bafe. And 201,0624 $\times 4^{2}=8444,6208$ the Solid Content of that Cylinder DBGA.

## Corollary.

Hence it is evident that every qquare Parallelopipedon is to its infcrib'd Cylinder, as 1 : is to 0,7854 . Or in whole Numbers, as 452 : to 355 very near. And that all Prifms are in Proportion to their infcrib'd Cylinders, as the Area's of their Bafes are.

## THEOREM XII.

The Curve Superficies of every Right Cylinder is equal to the Rectangle made of its Height into the Periphery of its Bafe.

That is, $D B$ multiply'd into the Periphery of the Diameter $B A$, will produce the Curve Superficies of the laft Cylinder $D B$ $G$ A. For the Cylinder is conftituted of an infinite Series of equal Circles (according to the laft Theorem.) Therefore its Curve Superficies is compos'd of the Peripheries of thofe Circles, bv Definition 20. But the Periphery of its Bafe $B A$ is one of the Ferms, and its Height $D B$ is the Number of Terms. Therefore, $\varepsilon^{\circ} c$. as by Lemma I. To which, if there be added the Area's of both its Ends (or Bajes) the Sum will be the Superficies of the whole $C y$ linder.

Example. Suppofe the Diameter of its Bafe to be $B A=16$. and its Height $D B=42$; as before, then $\mathrm{I}: 3,1416:: 16:$ 50,2656 the Periphery of its Bafe. Again, 1:0,7854:: $16 \times 16$ $=256: 201,0624$ the Area of each End or Bafe.

Then $50,2656 \times 42=2111,1552$ the Curve Superficies, to which add $201,0264 \times 2=402,1248$ both the End Area's.

The Sum $=2513,2800$ is the Superficies of the whole Cylinder.

## THEOREM XIII.

Every Cone is the third Part of a Cylinder, having the fame Bafe with it, and their Altitudes equal. (IO. e. 12.)

## Demonftration.

The Truth of this Theorem may be eafily conceiv'd by only confidering, that a Cone is but a round Pyramid, and therefore it muft needs have the fame Ratio to its circumfcribing Cylinder as the fquare Pyramid hath to its circumfcribing Parallelopipedon, wiz. as $\mathrm{I}:$ to 3 . However, to make it yet clearer, let it be farther confidered, that every Right Cone is conftituted of an infinite Series of Circles, whofe Diameters do continually encreafe in Aritbmetick Progreffion beginning at the Vertex or Point $V$, the Area of its Bafe $B A$ being the greateft $T_{e r m}$, and its perpendicular Height $V G$ the Number of all the Terms ; therefore the Area of the Circle $B A \times \frac{1}{3} V C$ will be the Sum of all the Series, by Lemma 3, which is the Cone's Solidity.

Example. Let the Diameter of its Bafe be
 $B A=16$, and its Height $V C=42$; Then 1:0,7854::16×16=256:201,0624 the Area of the Bafe; and $\frac{201,0624 \times 42}{3}=2814,8736$ the Solidity of the Cone B VA. Or thus, $201,0624 \times \frac{42}{3}=2814,8736$, छ' 6 .

> Corollary.

Hence it follows, that every fquare Pyramid is to its infcrib'd Cone, as $1: 0,7854$. (Or às $452: 355$ ) confequently, that all Pyramids have the fame Ratio to their infcrib'd Cones as the Area's of their Bafes have.

## THEOREM XIV.

The Curve Superficies of cuery Right Cone is equal to half the Rectangle of the Periphery of its Bafe into the Length of its Side.
The Truth of this Theorem is felf-evident from the Definition of a Cone, Chap. I, Part IV, where it appears, that the Curve Superficies of every Right Cone (as $B V A$ ) is equal to the Area of a Sector of that Circle whofe Radius is the Side of the Cone ( $V B$ ) and its Arch equal to the Peripbery of the Cone's Bare ( $B A$ ). But the Area of any Sector is equal to half the Rectangle of the Radius into its $\boldsymbol{A} C h$, by Theorem 4. Therefore, $\varepsilon_{0} c^{\circ} \mathrm{c}$

418 The avithmetich of 5 nfinttes, $\quad$ Part $V$.
Example. Suppofe the Length of the Cone's Side to be $V B$, or $V A=42,7551$, and the Diameter of its Bare, viz. $B A=16$ (as before) then will 50,2656 be the Periphery of its Bafe, and $\frac{50,2656 \times 42,7551}{2}=1074,5553$, ®' $^{\circ}$. the Curve of the Superficies; to which if there be added the Area of its Bafe, the Sum will be the Superficies of the whole (viz. all the) Cone.

That is, 1074,5553
$+201,0624$ the Area of the Bafe.
Sum 1275,6177 is the total Superficies, \& c .
Note, The Truth of this Theorem may be prov'd from the Confsderation of the laft Theorem and Definition 20.

## Scholium.

From the roth and I 3 th Theorems may be eafily deduced feveral Theorems for finding the folid Content of any Fruftum or Part, either of a Pyramid or Cone, cut by a plain Parallel to its Bafe.

Suppofe a fquare Pyramid, as $B V A$, to be cut by a Plain at $a b$, parallel to its Bafe $B A$, and it were requir'd to find the Solidi$i y$ of the Fruftum or Part $a b A B$; let there be given $D=B A$ the Side of the greater Bafe. $d=b a$ the Side of the leffer Bafe. $H=C P$ the perpendicular Height.


Firft, $\left\lvert\, \begin{gathered}D-d: H:: d: \frac{d H}{D-d}=V C \text { by the Figure. } \\ H+V C\end{gathered}\right.$

And $3 d d \times \frac{1}{3} V C=$ the Pyramid $a V b$ cut off.
Viz. I, $2\left\{4\left\{\begin{array}{l}\frac{D D H}{3 D-3^{d}}=\text { the whole Pyramid } B V A \text {. } . ~ . ~\end{array}\right.\right.$
And $1,355\left\{\frac{d d d H}{3 D-3 d}=\right.$ the Pyramid $a V b$.
 Which in Words gives this following Theorem.

## THEOREM XV.

To the Rectangle of the Sides of the two Bafes, add the Sum of their Squares; that Sum, being multiply'd into one T'bird of the Fruftum's Height, will give its Solidity.

Example. Suppofe the Side of the greater Bafe $B A=16$, and the Side of the leffer Bafe (or Top) $a b=12$ the Height $C P=9$. Then $16 \times 12=192.16 \times 16=256$, and $12 \times 12=144$. Next $192+256+144=592$. and $\frac{592 \times 9}{3}=1776$. Or $592 \times 3$ $=1776$ the Content of the Frufum of a fquare Pyramid.

And if it were the like Frufum of a Right Cone, it may be found by the fame Theorem. Suppofing $D=$ the Diameter of the greater Bafe, $d=$ the Diameter of the leffer, and $H=$ the Height of the Frufum, then the Sum of all the Squares which conftitute the Frufum of a fquare Pyramid, are to the Sum of all the Circles which conftitute the like Fruftum of a right Cone, in the Ratio of I: to 0,7854 (or of 452 : to 355) therefore it will be $1: 0,7854:: \overline{D D+D d+d d} \times \frac{1}{3} H: 0,7854 D D+$ $0,7854 D d+0,7854 d \bar{d} \times \frac{1}{3} H=$ the Cone's Frufum, that is, in the laft Example, $1: 0,7854:: 1776: 1394,8704$ the like
 Therefore it may be made $1,2 7 3 2 3 6 \longdiv { D D + d + d d } \times \frac { 1 } { 3 } H$ (二the fame Fruftum; that is, 1,273236 ) 1776 ( $1394,87,0^{\circ} \mathrm{C}$. as before. And if you take the Triple of this Divifor, riz. 1,273236 $\times 3$, it will be 3,8 197) $\overline{D D+D \bar{d}+d d}: \times H(=$ the Fruflum, \&cc.

> Again,

Hence we have another eafy 7 heorem for finding the fame Frufum.

THEOREM XVI.

To the Rectangle of the Sides of the two Bafes, add one third Part of the Square of their Difference; that Sum, being multiply'd into the Height, will produce the Solidity.

Exan ple. Let $D=16 . d=12$. and $H=9$, as before; then $D d=192 . D-d=4=x \cdot \frac{1}{3} x x=\frac{4 \times 4}{3}=5,3333$, and $192+5,3333=197,3333$. Laftly, $197,3333 \times 9=1775$, 9997 the Solidity of the Fruftum of the fquare Pyramid, as before. And 3,81968 ) $1775,9997(1394,87$, Evc. the like Fruftum of a right Cone, as before.

Either of the two laft Theorems (being rightly apply'd) will produce the true folid Content of all Fruftums of any kind of Pyramids, that are intercepted between two parallel and alike Plains or Bafes: As above.

But if fuch Fruflums are cut through the Extremities of both Bafes by a Diagonal Plain (as $A b$ in the annexed Figure) into two Parts, $A$ a $b$ and $A B b$, call'd Hoofs ; then the Solidity of thore Hoofs is ufually, found by dividing the middle Term $D d$ of the Equation $D d+D d+d d$ into two Parts, and adding one of thofe Parts to the
 Square of each Bafe. Thus, $\overline{D D+\frac{1}{2}} D \bar{d} \times \frac{1}{3} H=$ the great Hoof $A B b$, and $\overline{d d+\frac{1}{2} D d} \times \frac{1}{3} H=$ the leffer Hoof $A a b$ of the Fruftum of any fquare Pyramid. Then 3,8197$) \overline{D D+\frac{1}{2} D d x}$ $H(=)$ the greater Hoof of a Cone. And 3,8197$) \overline{d d+\frac{1}{2} D d x}$ $H(=)$ the leffer Hoof, \&c.

Thefe are the Theorems made Ufe of by Mr. Darie, in his Book of Gauging, and are pretty near the Truth, but not exactly fo; for they give the Solidity of the upper Hoof $A a b$ a fmall Matter too big, and the lower Hoof $A B b$ as much too little.

Now, in order to rectify that fmall Error, I fhall here propofe the two following Theorems, which come very near the Truth, and are more eafily perform'd than thofe propos'd in the firf Impre $\sqrt{ }$ Ion of this Book.

Firft, $\overline{D D+\frac{8}{2} D d+D-d \times \frac{1}{3}} H$ will be the Solidity of the greater Hoof $A B b$.

Secondly, $\overline{d d+\frac{1}{2} D d+d-D \times \frac{1}{3}} H$ will give the Solidity of the leffer Hoof $A a b$, of the Fruftum of any fquare Pyramid.

And for the like Hoofs of the Fruftum of any right Cone, it will be
Thus, 3,8197$) \overline{D D+\frac{1}{2} D d+D-d x} * H$ ( $=$ the greater Hoof. And 3,8197$) d d+\frac{1}{2} D d+d-D \times \quad H(=$ the leffer Hoof.

Note, In order to avoid many Words in the following Demons Atrations, let $\odot$ Jignify any Circle in general; and if any two Letters be join'd to it, thus, $\odot B A$, \&c. it then denotes the Area of fuch a Circle as thofe two Letters reprefent the Radius of.

## THEOREM XVII.

The Superficies of every Sphere (or Globe) is equal to four Times the Area of its greateft Circle.

That is, of a Circle whofe Diameter is the Axis of the Sphere.

## Demonfration.

If any Semicircle (as $A T G S$ ) be turn'd or mov'd about its Diameter (TS) it will defcribe a folid Body call'd a Sphere, which will be conftituted of an infinite Series of concentrick or parallel Circles, whofe Diameters are Chords, viz. © ab, © $e d, \odot e f, \& c$. by Definition 14. Confequently, the Superficies of the Sphere will be compos'd of the Peripheries of thofe Circles which conftitute its Solidity, by Definition 20.

Let $D=\mathcal{T} S$, the Axis of any Sphere. Then, according to the Property of a Circle, it

will be $|\mathrm{I}| D-\tau b \times T b=\square a b$
That is, $2 D \times T b-\square T b=\square a b$
Therefore $3 D \times T b=\square a T$, for $\square a b+\square \mathcal{T} b=\square a \mathcal{T}$.
And $\left\{\begin{array}{l|l}4 & D \times T d=\square e T \\ 5 & D \times T f=\square y T, ~ \& c .\end{array}\right.$

[^6]
## 422 The Aritthetick of 3 nfinites,

Hence 'tis evident, that the Series $\square a \mathcal{T}, \square e T$, $\square$ y $T, \& c$. are in the fame Ratio with $\mathcal{T} b, T d, T f, \& c$. viz. in Arithmetick Progreffion; whence it follows, that the $\odot a \tau=$ the Sum of all the Circle's Peripheries between $T$ and $b$, and $\odot e \tau=$ the Sum of all the Circle's Peripheries between $\tau$ and $d, \& z c$. Confequently, that the $\odot A T=$ the Sum of all the Circle's Peripheries included between $T$ and $C$; that is, $\odot A T=$ the Superficies of the Hemisphere. And becaufe $\square A C+\square T C=\square A T$, and $\square A C=$ $\square T C$. Therefore $\odot A T=2 \odot A C$ is the Superficies of the Hemijphere. Confequently, $4 \odot A C$ will be the Superficies of the whole Sphere. Q. E. D.

Example. Suppofe the Axis T S $=D=16$. Then $D D=256$, and $1: 0,7854:: 256: 201,0624=\odot A C$, for $\frac{1}{2} D=A C$. Then $201,0624 \times 4=804,2496$, the Superficies of the whole Sphere. Or, becaufe 3,1416 is four Times 0,7854 , therefore it will always be $1: 3,1416:: D D: 3,1416 D D$, the Superficies of the Sphere (as before) ; and it is equal to the curve Superficies of the right Cylinder, whofe Diameter and Height are each $=D$ the Axis of the Sphere. For $3,1416 D=$ the Periphery of the Cylinder's Bafe, and that, multiply'd with $D$ its Height, will be 3,1416 DD the curve Superficies of the Cylinder, by Theorem 12. And if to this there be added the Area of its two Bafes (or Ends) viz. 1, 5708 DD, then 'tis evident, that the whole Superficies of the Cylinder will be to that of the Sphere in Proportion of 3 to 2.

## Scholium.

From the Method here ufed in proving the laft Theorem 'twill be eafy to find the curve Superficies of any Segment, or Part of a Sphere, that is cut off by a Right Line or Plain, viz. fuch as the Segment $a \boldsymbol{T} m$ in the laft Scheme, whofe curve Superficies is $\odot$ a $T$ (as above). Therefore (becaufe $\square a b+\square T b=\square a \mathcal{T}$ ) it will be $\odot a b+\odot \mathcal{T} b=$ the curve Superficies of that Segment.

But if the Axis $\mathcal{T} S$, and Height $\mathcal{T} b$, of the Segment are given, then will it be $\mathcal{T} S \times \mathcal{T} b \square a \mathcal{T}$; as in the third Step above: Which gives this Proportion or Theorem;

Viz. $\{$ As the Axis of the Sphere: is to the whole Superficies of the Sphere : : $\int 0$ is the Height of any Segment to its curve Superficies.
To which if there be added the Area of the Segment's Bafe, the Sum will be the Superficies of the whole Segment.

## THEOREM XVIII.

Every Sphere is equal to two Thirds of its circumfcribing Cylinder.
That is, of a Cylinder whofe Height and Diameter of its Bafe are each equal to the Axis of the Sphere.

## memonfration.

According to the Work in the laft Theorem it appears, that $\odot a b, \odot e d, \odot y f, \& c c$. do contitute the Solidity of the Sphere; and that $\square a \tau$, $\square e \mathcal{T}, \square y \mathcal{T}, 8 \mathrm{c}$. are a Series of Terms in Arithmetick Progreffion, $\square A T$ being the greateft Term, and T $C$ the Number of Terms ; therefore $\odot A T \times{ }_{\frac{1}{2} \mathcal{T} C} C=$ the Sum of all the Series, per Lemma 2. And becaufe $\square a T-\square \mathcal{T} b=\square a b$, $\square e T-\square T d=\square e d, \square y T-\square T f$ $=\square y d, \square A T-\square T C=\square A C$,
 \&c. wherein $\square T b, \square \tau d, \square T f, \& c$. are a Series of Squares whofe Roots $\tau b, \tau d, T f$, are in Arithmetick Progreffion, $\square \tau C$ being the greatef Term, and IC the Number of Terms; therefore © $T C \times \frac{1}{3} T C=$ the Sum of all that Series, per Lemma 3, confequently, $\odot A T \times \frac{1}{3} T C-\odot T C \times \frac{1}{3} T G=$ the Sum of the Series $\odot a b, \odot e d, \odot y f, \& c$. which conftitute the Solidity of the half Sphere $A T G$. Put $D=2 T C$ the Axis of the Sphere; then $\frac{x}{4} D=\frac{x}{2} T C$, and $\frac{1}{6} D=\frac{1}{3} T C$. And becaufe $\square A T=2 \square$ $T C$; therefore $\odot A T=2 \odot T C=1,5708 D D$. And 1,5708 $D D \times \frac{1}{4} D=0,3927 D D D$.

Again, $D T C \times \frac{1}{3} T C=0,7854 D D \times \frac{1}{6} D=0,1309 D D D$, then $0,3927 D D D-0,1309 D D D=0,2618 D D D$ the Solidity of the Semi- $\rho$ phere $A T G$; confequently, $0,2618 D D D \times 2=0,5236$, $D D D$ will be the folid Content of the whole Sphere, which is equal to two Thirds of the Cylinder whofe Diameter of its Bafe and Height $=D$. For $0,7854 D D D=$ the Solidity of the Cylinder, by Theorem Ir. But $\frac{2}{3}$ of $0,7854 D D D=0,5236 D D D$; as before. Therefore, $\varepsilon^{\circ} \sigma_{0}$ : as by Theorem.

Example. Suppofe the Axis $D=16$, then $D D D=4 c 96$, and 1: $0,5236:: 4096: 2144,6656$ the folid Content of that Sphere.

## Corollaries.

1. Hence it appears, that the folid Content of every Sphere is equal to its Superficies multiply'd into one fixth Part of its Axis. For its Superficies is 3,1416 D $D$, by Theorem 17. But $3,1416 \times$ $\frac{1}{6} D=0,523^{6} D D D$ the folid Content, as before.
2. And hence 'tis alfo evident, that there is the like Ratio or Habitude between the Cube and its infcrib'd Sphere, as is betwixt the Square and its infcrib'd Circle; and that is, as the Superficies of any Cube : is to the Superficies of its infcrib'd Sphere : : fo is the folid Content of that Cube : to the folid Content of the Sphere. [See the Circle's Proportion, Page 407.] For if $D=$ the Side of the Cube, then $6 D D=$ its Superficies, and $D D D=$ its Solidity, and 3,1416 DD $=$ the Sphere's Superficies. But $6 D D$ : 3,1416 $D D:: D D D: 0,5236 D D D$ the Solidity of the Sphere; as above.

## Scholium.

From the Proof of this Thearem 'twill be eafy to deduce or raife Theorems for finding the folid Content of any Fruftum or Segment of a Sphere, as a $T m$ in the laft Figure. For we there fuppofe the Segment $a \mathcal{T} m$ to be conftituted of an infinite Series of Circles, which have the fame Ratio with all thofe Circles that conftitute the Semi- Sphere. Therefore it follows, that $\odot$ at $\times \frac{1}{2} T b$ - $\odot b T \times \frac{1}{3} T b$ will be the Sum of all the Circles intercepted between $T$ and $b$. Confequently 'twill be the Solidity of that Segment. And becaufe $\square a b+\square \tau \mathcal{T}=\square a \tau$ : therefore $\odot a b+\odot T b \times \frac{1}{2} \tau b-\odot T b \times \frac{1}{3} b=$ the fame Solidity.

Let $c=a b$ half the Segment's Bafe ; $b=\tau \boldsymbol{T}$ its Height; and $S=$ the Solidity of the Segment or Frufum: Then $\odot a b=3,14$ $16 c c$, and $\odot T b=3,1416 b h$. Confequently,
$\frac{3,1416 c c h+3,14 \times 6 h h h}{2}-\frac{3,1416 b b h}{3}=S$, which being reduced will become $\overline{3^{c c h}+b b h} \times 0,5236=S$. Or 1,909855$) 3^{c c h}+b b b$ (二S. for 0,5236 ) $1,0000(1,909855$. Which is one Theorem for finding the Frufium's Solidity.

Note, Here we fuppofe the Height of the Segment, and the Diameter of its Bafe to be given; but if the Axis of the Sphere, and the Height of the Segment be given, then putting $D=$ the Sphere's Axis, $b=$ the Segment's Height, and $c$ as before, 'twill be $\overline{D-b} \times b=c a$, viz. $D b-b b=c c$. Therefore $3 D b b-2 b b b$ $=3 c c h+b b b$. confequently $3 D h b-2 b b b \times 0,5236=S$, the Frufum's Solidity. Or 1,90985 ) 3 Dbb-2bbb $(=S$, as before. Which is a fecond Theorem for finding the fame Fru-今umaTm.

And if it be requir'd to find the middle Part amNK, ufually call'd the middle Zone of a Sphere, then becaufe 'tis fuppos'd that a $m=N K$, or which is all one, that $b C=C B$, therefore it is plain, that, if twice the Segment $a$ I $m$ be taken from the Solidity of the whole Sphere, there will remain the Middle Zone a $m N K$. But, becaufe that Work is a little troublefome, I hall here Shew how to raife a Theorem for the doing it.


Firft, Becaufe $A C=y C=e C=a C=\tau C$. Therefore it will be $\square A C-\square C f=\square y f . \square A C-\square C d=\square e d$. $\square A C-\square C b=\square a b, \& c$. Here becaufe $\square A C . \square A C$. - $A C, \& c$, are a Series of Equals, and $C b$ the Number of all the Terms, therefore $\square A C \times C b=$ the Sum of all that Series, by Lemma 1 . And $\square C f, \square C d, \square C b$, \&xc. being a Series of Squares whofe Roots are in Aritbmetick Progreffron, beginning at the Center or Point $C$, viz. o, $C f, C d, C b, \& c$. wherein the greatef Term is $\square C b$, and Number of Terms is $C b$. Ergo $\square$ $C b \times \frac{1}{3} C b=$ the Sum of all the Series by Lemma 3. Confequently, the $\odot A C \times C b-\odot C b \times \frac{1}{3} C b=$ the Sum of all the Series $\odot y f . \odot e d . \odot a b, \& z c$. which do conflitute the Solidity of the balf Zone a $m A G$. And becaufe $\square A C-\square C b$ $=\square a b$. Ergo $\odot A C-\odot a b=\bigcirc C b$. Confequently $\odot A C$ $\times C b-\frac{\overline{\odot A C-\odot a b \times C b}}{3}=\frac{\overline{2} \cdot A C+\odot a b}{2 \odot \frac{y}{3} C b \text { will be the }}$ Solidity of the balf Zone.

Put $D=A G=2 A G . x=a m$, and $H=b B={ }_{2} C b$. Then © $A C=0,7854 D L$. $\circ a \dot{b}=0,7854 x x$. And if we turn the common Factor 0,7854 into the Divifor 1,27323,
and then take the Triple of that Divifor, viz. 3.8197 (as before in the Fruftum of Pyramids) the Refult of the precedent Work will produce this following. Theorem.


## THEOREM XX.

Spheres are in Proportion one to another as the Cubcs of their Diameters. (18.e.12.)

## Semonfration.

Suppofe $D=$ the Diameter or $A x$ is of any Sphere, and $d=$ the Diameter of another Sphere, either greater or leffer. Then is $0.5235 D D D=$ the Solidity of one Sphere, and 0,5236ddd = the Solidity of the other Sphere, by Theorem 18. But $D D D: d d d::$ 0,5236 D D D: 0,5236ddd.
Q. E. D.

## THEOREM XXI.

The foild Content of every Spheroid is equal to two Thirds of its circumfcribing Cylinder.

## Demonf ration.

Suppofe the Figure NT $n S N$ in the annex'd Scheme, to reprefent a Spheroid, form'd by the Rotation of the Semi-Ellipfis T NS, about its Tranfuerfe Axis TS (as by Definition 15.)

Let $D=T S$, the Length of the Spheroid, and the Axis of its circumfcribing Sphere; and $d=N n$, the Diameter of the greateft Circle of the Spheroid. Then becaufe $\square T C: \square N C:: \square A b:$ $\square a b$, by Ssep 3 in Theor. 7 , therefore it will be $D D: d d:: \square A b$ : $\square a b:: \odot A b: \odot a b$, \&ic. But the Sum of an infinite Series of fuch Circles as $\odot A b$ (whofe Diameters are Chords) do conflitute the Solidity of the Sphere, (as before at Theorem 18) and the Sum of an infinite Series of fuch Circles as © $a b$ (viz. whofe Diameters are Ordinates of the Ellipfis) do conftitute the Solidity of the Spheroid, by Definition 15. Ergo $D D: d d:: 0,5236 D D D$ : $0,5^{2} 3^{6 d d} D=$ the Solidity of the Spheroid, by Lemma 6.


But 0,5236dd $D=\frac{2}{3}$ of the Cylinder whofe Diameter is $=d$, and Height $=D$, by Theorem II.
Q. E. D.

Now, from this Proportion between the Sphere and its infcrib'd Spheroid, 'twill be very eafy to deduce Theorems for finding the Solid Content either of the Segment or middle Zone of any Spheroid, having the fame Height with that of the Sphere.

> For
> As the Solidity of the whole Sploere: is to the Solidity of the whole Spheroid: : fo is any Part of the Sphere: to the like Part of the. Spheroid, by the Converfe to Lemma 6.

As for Inftance; fuppofe it were requir'd to find the middle Zone of any Spheroid: Let $D=T S$, and $d=N n$, as above; and $H=b B, x=A M$, as in Theorem 19 , and let $c=a m$. Then $\frac{2 D D+x x}{3,8197} \times H=$ the middle Zone of the Sphere. And 0,52,36DDD
$: 0,5236 d d D:: \frac{2 D D+x x}{3,8197} \times H: \frac{2 d d \times H}{3,8197}+\frac{x x d d \times H}{3,8197 D D}=$ the middle Zone of the Spheroid.

Again, $D D: d d:: x x: c c$, therefore $\frac{x x d d}{D D}=c c$. confequently, $\frac{x x d d}{D D} \times \frac{H}{3,8197}=\frac{c c}{3,8197} \times H$, which being taken inftead of $\frac{x x d d \times H}{3,8197 D D}$, there will arife this following
THEOREM XXII. $\left\{\frac{2 d d+c c}{3,8197}: \times H=\left\{\begin{array}{l}\text { the middle Zone } \\ \text { of the Spheroid }\end{array}\right.\right.$ being the very fame with Theorem 19.

Note, In the fame Manner you may raife Theorems for finding the Segment of a Spheroid, cut off at either of its Ends, \&rc.

## THEOREM XXIII.

The Area of every Parabola is equal to two Thirds of its circumforibing Paralielogram.

## Demonfration.

Let the Figure $S A B$ reprefent half a Paraboin. Make $D B$ parallel to the $A x$ is $S A$, and $S d$ parallel to the Semi.Ordinate $A B$, and fuppofe $S d$ to be divided into an infinite Scries of equidiftant

428 The atithmetich of 5 nfiniteg, Part V .
Points, as $f, g, h, \& c$. and from thofe Points imagine a Series of $p a-$ rallel Lines, viz. f $m, g n, b p, \& i c$. to touch the Curve of the Parabola, and meet the Semiordinates $m a, n e, y p, \& c$. Then, according to the Property of the Parabola, it will

In thefe Proportions $\square a m, \square e n, \square y p, \& z c$. are a Series of Squares whole Roots $S f, S g, S h, \& c$. are in Aritbmetick Progreffion, beginning at the Point $S$. And becaufe the Lines $h p, g n, f m, \& c$. have the fame Ratio, therefore they are as fuch a Series of Squares, wherein $d B$ is the greateft Term, and $S d$ the Number of Terms. Confequently $\frac{d B \times S d}{3}=$ the Sum of all thofe Lines, by Lemma 3 . But $S A \times A B=d B \times S d$. Therefore $\frac{S A \times A B}{3}=$ the $S$ um of all that Series of Lines; but all thofe Lines do conftitute the Area of the Semi-Parabola's Complement, viz. the Area of what half the Parabola wants of compleating or filling up the Parallelogram $S d A B$. Wherefore $S A \times A B-\frac{1}{3} S A \times A B=\frac{2 S A \times A B}{3}$ will be the Area of half the Parabola $S A B$. Confequently, $\frac{2}{3} S A \times b B$ will be the Area of the whole Parabola bS B. Q. E. D.

Example. Suppofe the Bafe, or greatef Ordinate, of a Parabola to be $b B=24$, and its intercepted Diameter (or Axis) be $S A=$ 33 ; then $2 S A \times 6 B=66 \times 24=1584$, and 3 ) 1584 ( 528 the Area of that Parabola.
THEOREM XXIV.

Every Parabolick Conoid is emuci to one Ilalf of its circumfcribing

## ©emonftration.

If any Semi-Parabola (as $B S A$ ) be turn'd or mov'd about its Axis (S A) 'twill form a folid Parabolical Conoid, conftituted of an infinite Series of Circles, viz. ○ba, ○fe, $\odot g y, \& c$. by Definition 17.

Now, according to the Property of every Parabola, it will be, $S A: A B:: A B: \frac{\square A B}{S A}=L$, the Latus Rectum.

$$
\text { Then }\left\{\begin{array}{l}
S a \times L=\square b a \\
S e L \equiv \square f e \\
S y \times L \equiv \square g, s c .
\end{array}\right.
$$

Here $S_{a} \times L, S_{e} \times L, S_{y} \times L, \& c$. are a Series of Terms in Arithmetick Progreffion: therefore $\square b a$, $\square f e, \square g y, \& c c$. are alfo a Series of Terms in the fame Progreffion, beginning at the Point $S$; wherein 口 $A B$ is the greateft Term, and $S A$ the Number of all
 the Terms. Therefore $\square A B \times \frac{1}{2} S A=$ the Sum of all the Series by Lemma 2. Confequently, $\odot A B \times \frac{1}{2} S A=$ the Sum of all the Series $\odot b a, \odot f e, \odot g y, 8 x c$. which do conftitute the Solidity of the Conoid. And putting $D=2 A B$, and $H=S A$. Then 0,7854 $D D \times{ }^{\frac{1}{2}} H=0,3927 D D H$ will be the folid Content of the Conoid, which is juft half the Cylinder whofe Bafe $=D$ and Height $=H$. [See Theorem I I.] Q. E. D.

This being underfood, 'twill be eafy to raife a Theorem for finding the lower Frufum of any Parabolick Conoid. For fuppofing $h=a A$ the Height of the Frufum, and $p=S$ a the Height of the Part $b S b$ cut off; then $b+p=S A$, the Height of the whole Conoid. Confequently, $\frac{\odot A B \times b+\cdot A B \times p}{2}=$ Salidity of the whole Conoid. And $\frac{b a+p}{2}=$ the Solidiiy of the Part cut off.


430 The axitimeticit of 3nfinites, Part V.

| 4-® $a_{a \times p}$ |  | $\odot A B \times p-\odot b a \times p=\odot b a \times b$ |
| :---: | :---: | :---: |
| ${ }^{2}$ | 6 | - $A B \times h+\odot A B \times p$ |
| 6-5 | 7 | $\bigcirc A B \times b=2 F-\odot b a \times b$ |
| $7+\odot b a \times b$ | 8 | - $A B \times b+\odot b a \times b=2 F$ |
| 8 - - |  | $\bigcirc A B+\odot b a \times b=F$ the Frufum's Solidity. |

Let $D=A B$, as before, and $d=2 b a$ the Diameter of the Part cut off; then we flall have this following

THEOREM XXV. $\left\{\begin{array}{l}0,3927 D D+0,3927 d d \times b=\text { the } \\ \text { Solidity of the Frufum requir'd. }\end{array}\right.$ Or $\left\{\frac{D D+d d}{2,5404} \times b=\right.$ the Frupum; for ,3927) 1,0000 $(=2,5464$ and becaufe $2,5464+\frac{2,5464}{2}=3,8196$; therefore it may be made 3,8196$) \overline{D D+d d \times \frac{1}{2}} h(=$ the fame Frufium, \&c.

Note, The Reafon why 1 have reduced this Theorem to bave the fame Divifor with thofe at the Fruftums of Pyramids, \&c. will beft appear farther on, viz. when they all come to be apply'd to Practice in Gauging.

## THEOREM XXVI.

Every Paraboiick Spindle (or Pyramidoid) is equal to eight Fifteenths of its circumfcribing Cylinder.

## Demonfration.

If any acute Parabola, as $b S B$, be turn'd or mov'd about its greatef Ordinate $b A B$, it will form a Solid call'd a Parabolick Spindle, conftituted of an infinite Series of $\odot m a, \odot n e, \odot p y, \& c c$. by Defintion 18.

Let us fuppofe the Line $S d$, parallel to $A B, \& c$. (as at Theorem 23) then it bath already been prov'd, that the Lines $f m, g n, b p$, \&c. are a Series of Squares whofe Rosts are in Arithmetick Progreffion: confequently their Squares, viz. $\square f m, \square g n, \square b p$. \&ic. will be a Series of Biquadrates, whore Roots will be in Arithmetick Progreffron: which being premis'd, we may proceed thus.
Fint, $\left\{\begin{array}{l|l}1 & S A-f m \text { 三 } m a \\ 2 & S A-g n \equiv n e \\ 3 & S A-b p=p y \& i c .\end{array}\right.$


1 (6) 2

| $1 \theta^{2}$ | $4 S A-2 S A \times f m+\square f m=\square m a$ |  |
| :--- | :--- | :--- |
| $2 \theta^{2}$ | 5 | $\square S A-2 S A \times g n+\square g n=\square n e$ |
| $3 \theta^{2}$ | 6 | $\square S A-2 S A \times b p+\square h p=\square p, d c$. |

In thefe Equations the $\square S A, \square S A, \square S A$ being a Serics of Equals, and $A B$ the Number of all the Terms; therefore it will be $\square S A \times A B=$ the Sum of the Series, by Eemma 1 .
2. Becaufe $f m, g n, b p$, \&cc. are as a Series of Squares wherein $S A$ is the greatef Term, and $A B$ the Number of all the Terms; therefore $\frac{2 S A \times S A \times A B}{3}=\frac{2 \sqsupset S A \times A B}{3}$ will be the Sum of ail that Series, by Lemma 3.
3. And the $\square f m, \square g n, \square b p$, \&c. will be a Series of Terms in the Ratio of Biquadrates, as above; $\square d B=\square S A$ being the greatef Term, and $A B$ the Number of all the Terms; therefore it will be $\frac{\square S A \times A B}{5}=$ the Sum of all that Series, by Lemma 5.
Whence it follows, that $\square S A \times A B-\frac{2 \square S A \times A B}{3}+$ $\square \frac{\square A \times A B}{5}=$ the Sum of all the Series of $\square m a, \square n e, \square p y$, $\mathcal{F}^{c}$. That is, $\frac{8 \square S A \times A B}{15}=$ the Sum of all the Series of $\square m a$, $\square n e, \square h p, \square d B . \& c \mathrm{c}$ confequently, $\frac{8 \odot S A \times A B}{15}=$ the Sum of all the Series of $\odot m a, \odot n \ell, \odot p y, \& c$ which do conftitute the Solidity of half the Spindle, viz. of $S A B$. Therefore putting $D=2 S A$, and $H=2 A B$, (viz. $6 A B$ ) it will be $0,41888 D D H$ $=$ the Solidity of the whole Parabolick Spindle $b S B$, being $\frac{8}{5}$ of 0,7854 DDH the Solidity of its circumjfribing Cylinder. Q. E.'D.
From hence we may aifo raife a Theorem for finding the Fruftum $S A p y$ of the laft Figure. For $\odot S_{A}$ being the greateft Term, $\odot p y$ the leaft Term, and $A y$ the Number of all the Terms or Circles included between $A$ and $y$,


$$
2 \div A y
$$

 of all the Series of $\odot S A, \odot m a, \odot n e, \odot p y$, which do conftitute the Solidity of the Fruffum $S A p y$. Therefore putting $D=2 S A$, as before, $C=2 p v, x=2 h p$, and $H=A y$, it will be $1,5708 D D+0,7854 \mathrm{CC}-0,31416 \times x \times \frac{1}{3} H=$ the Frupum $S$ A p $\%$. And if we make $L=2 H$. Then $\overline{1,5708 D D+0,854 C C-0,31416 \times x \times \frac{1}{3}} L=$ Double of that Frufum, being the middle Zone. And by turning there Factors into one common Divifor, as in the Fruftum of the Conoid at Theorem 25, Page 430, there will arife this following Theorem.

## THEOREM XXVII.

$$
\left\{\begin{array}{l}
\left.3, \sqrt{8} \mathrm{I} \mathrm{~g}^{2}\right) 2 D D+C C-0,4 \times \times \times L
\end{array} \text { ( }=\right.
$$

It may be here expected that I hould now proceed to fhew how the Area of any Hyperbola, and the Contents of fuch Solids as may be form'd by the Rotation of that Figure about its Axis, \&c. may be found; but becaufe thofe Things cannot be exactly perform'd by any certain or fettled Theorem, as thefe of the Circle, Ellipfis, and Parabola have been, I have therefore omitted them, and refer the Reader to Dr. Wallis's Algebra, Chap. 90, E®c. or to the Pbilofoph. Franfact. Numb. 34, wherein he may find the Method of forming infinite Series relating to the fquaring of an Hyperbola, \&c. which are too tedious to be fully explain'd and demonftrated in this imall Tract, it being only intended as an Introduction, the which I fhall here conclude.

$$
\begin{array}{lllll}
F & I & N & I & S
\end{array}
$$

## A N

## A P P E N D I X

 0 F
## Practical Gauging.

THE Art of Gauging is that Branch of the Mathematicks called Stereometry, or the Meafuring of Solids, becaufe the Capacities or Contents of all Sorts of Veffels ufed for Liquors, $\mathcal{E}^{\circ} c$. are computed as tho' they were really folid Bodies; which any one that hath made himfelf Mafter of the 'foregoing Parts of this Treatife may eafily underftand, without any farther Directions.

However, becaufe 'tis not to be fuppos'd that every one, who defigns to undertake the Office or Employment of a Gauger, hath made fo great a Progrefs in Mathematical Learning, I have therefore prefented the young Gauger with this Appendix, wherein I have only inferted fuch Rules as are ufeful in Gauging, and have been already demonftrated in this Treatife. But herein, I prefuppofe that he hath acquir'd (or if not, 'tis very neceffary he fhould acquire) a competent Knowledge both in Arithmetick and Geometry: That is,
I. In Arithmetick he fhould underfand the principal Rules very well, efpecially Multiplication and Divifion, both in whole Numbers and Decimal Parts, (which may be eafily learnt out of the 2d, 3d, and 5 th Chapters of Part I.) that fo he may be ready at computing the Contents of any Veffel, and cafting up his Gauges by the Pen only, viz. without the Help of thofe Lines of Numbers upon Sliding Rules, fo much applauded, and but too much practis'd, which at beft do buthelp to guefs at the Truth; I mean fuch Pocket-Rules as are but nine Inches (or a Foot) long, whofe Radius of the double Line of Numbers is not fix Inches; and therefore the Graduations or Divifions of thofe Lines are fo very clofe, that they cannot be well diftinguifh'd. 'Tis true, when the Rules are made two or three Feet long (I had one of fix Feet) there they may be of fome Ufe, efpecially in fmall Numbers; altho' even then the Operations may be much better (and almoft as foon) done by the Pen: For, indeed, the chief Ufe of SlidingRules is only in taking of Dimenfions, and for that Purpofe they are very convenient.
II. In Geometry the Gauger fhould underftand not only how to take Dimenfions (which is beft learnt by Practice) but alfo how to divide any irregular Figure or Superficies, as Brewers Backs or Coolers, $\mathcal{F}_{c}$. into the eafieft and feweft regular Figures they will admit of, that fo their Area's may be truly computed with the leaft Trouble. And this may be learn'd (with a little Care and Diligence) out of the $1 \mathrm{ff}, 2 \mathrm{~d}$, and 5 th Chapters of Part III, which the Gauger fhould be well acquainted with. Alfo he ought to have fo much Skill in Solids, as to be able, even at fight (but this muft be acquired by Experience) to determine what fort of Figure any Veffel is of (viz. any Tun or clofe Cafk) or what Figures it may be beft reduced to, fo that its Dimenfions may be truly taken, and the Content thereof computed with the leaft Error. I fay, with the leaft Error, becaufe 'tis very difficult, if not impoffible, to do it exaclly; for there is not any Tun, or clofe Cafk, $\mathcal{E}^{\circ}$ c. fo regularly made, as by the Rules of Art 'tis requir'd to be.
III. Befides the aforemention'd, the young Gauger muft know, that all Dimenfions ufeful in Gauging are to be taken in Inches, and Decimal Parts of an Inch; and if they are taken in any other Meafures, as Feet, Yards, Ecc. thofe Meafures muft be reduced to Inches, (fee Sect. 4. Page. 42.) becaufe the Contents of all Sorts of Veffels (taken Notice of in Gauging) are computed by the Standard Gallon of its Kind, whofe Content is known to be a certain Number of Cubick Inches: That is, the Beer or Ale Gallon contains 282, the Wine 231, and the Corn Gallon 268, 8 Cubick Inches. [See the five Tables, $\varepsilon^{\circ} c$. in Pages $34,35,36$, which I here fuppofe the Gauger to have learnt perfectly, by heart.] Confequently, if either the fuperficial or folid Content of any Veffel, as Back, Tun, Cafk, $\mathcal{E}^{\circ}$ c. be once computed in Cubick Inches, 'twill be eafy to know how many Gallons, either of Ale, Wine, or Corn, that Veffel will hold.

Note, I have here faid, the Superficial Content in Cubick Inches, which may feem to be very improper, according to the Definition given of a Superficies in Page 279; but you muft know, that, in the Bufinefs of Gauging, all Superficies or Area's are always underftood to be one Inch deep, otherwife it could not be faid (as in the Gauger's Language it is) that the Area of fuch a Back, or of fuch a Circle, $\mathcal{E}_{c}$. is fo many Gallons.

Thefe Things being very well underftood, the young Gauger will be fitly prepar'd to underfand the following Problems, which are fuch as have (moft of them) been already propos'd in the 'foregoing Parts of this Treatife, and only are here apply'd to Practice; and therefore I fhall, for Brevity's Sake, often refer to thofe Theosems and Problems.

Sect.

Sect. I. To find the Area of any right-lined Superficies in Gallons.
PROBLEMI.

To find the Area of any fquare Tun, Back, or Cooler, Eoc. either in Ale, Wine, or Corn Gallons.
RuLe. $\left\{\begin{array}{l}\text { Multiply the given Length or Breadth (being here equal) } \\ \text { into itfelf, and the Produa will be the Area in Inches } ; \\ \text { then divide that Area by } 282 \text {, or } 23 \mathrm{~T}, \text { or } 258,8 \text { and } \\ \text { the Quotient will be the Area requir'd. }\end{array}\right.$
Example. Suppofe the Side of a Square Tun, Back, or Cooler be 124,5 Inches, what will its Area be in Gallons?

Firft $124,5 \times 124,5=15500,25$ the Area in Inches.
$\left.\begin{array}{l}\text { Then } 282 \\ \text { And 231 } \\ \text { Or } 268,8\end{array}\right\}_{15500,25}\left\{\begin{array}{l}54,96 छ^{\circ} c . \\ 76,10 \underbrace{}_{c} \\ 57,66 \vartheta_{c} .\end{array}\right\}$ the Area in $\left\{\begin{array}{l}\text { Al: Gallons. } \\ \text { Wine Gallons } \\ \text { Corn Gallons. }\end{array}\right.$
But if any one would rather work by Multiplication than by Divifion, he may turn or change any Divifor into a Multiplicator, if he divide Unity, or I, by that Divifor. (Vide Probl. 3, Pag. 402.)
$\left.\begin{array}{l}\text { Thus } 282 \\ \text { And 23I } \\ \text { Or } 268,8\end{array}\right\} 1,000000\left\{\begin{array}{l}0,003546 \\ 0,004329 \\ 0,003722\end{array}\right\}$ the Multipli. for $\left\{\begin{array}{l}\text { AleGallons. } \\ \text { W. Gallons. } \\ \text { C. Gallons. }\end{array}\right.$
Confequently $\mathbf{5 5 0 0}, 25 \times 0,003546=54,96$ 于'c. the Area in Ale Gallons ; as before and fo on for the reft.
PROBLEM II.

To find the Area of any Tun, Back, or Cooler in the Form of a Right-angled Parallelogram in Ale Gallons, छ'c.
See the Rule for finding its Area in Inches, at Probl. r. P. 339, then either divide (or multiply) that Area as above, and you will have the Area in Gallons.

Example. Suppofe the Length of a Brewer's Tun, Back, or Cooler be 217,5 Inches, and its Breadth 85,6 Inches, what wifl its Area be in Ale or Beer Gallons, छoc?

Firf $217,5 \times 85,6=18648$. Then 282) 18648 ( 66,12, E' $_{6}$. $\mathrm{Or}_{1} 86_{4} 8 \times 0,003546=66,12$, Ecc. $^{2}$, the Area requir'd, छ'c. Kkk2

PRO.

## PROBLEM III.

To find the Area of any Triangular Tun, Back, or Cooler, in Ale Gallons, $\mathfrak{E}_{6}$.
See the Rule for finding its Area in Inches at Prob. 3, p. 340; then divide (or multiply) that Area as before, and you will have the Area requir'd.

Example. If the Length of the Bafe of a Triangular Cooler be 86,4 Inches, and its Perpendicular Breadth be 57 Inches, what will its Area be in Ale Gallons?

Firf, $86,4 X^{5 \frac{7}{2}}=2462,4$. Then 282) $2462,4\left(8,73\right.$ E $c_{0}$ Or $2462,4 \times 0,0035+6=8,73$ E0 c. the Area in Ale Gallons.

Proceeding thus, you may eafily find the Area of any Tun, Back, or Cooler, whether it be in the Form of a Rhombus, Rhomboides, Trapezium, or any other Polygon, either regular or irregular, in Ale or Beer Gallons, $\xi^{\circ}$ c. if you firt divide it into Triangles, and then find the Area's of thofe Triangles; (as in the $2 \mathrm{~d}, 4 \mathrm{th}$, 5 th, and 6th Problems in Chap. 5, Part III.) the Sum of thofe Area's being divided (or multiply'd) by its proper Divifor (or Multiplicator) as above, will give the Area requir'd.

Now, the Practical Way of dividing any Polygonous Tun, Back, E c. into Triangles, is by help of a chalk'd Line, fuch as the Carpenters ufe, and may be thus perform'd.

Suppofe any Brewer's Tun, Back, or Cooler in the Form of the annex'd Figure $A B C D F G$. Let one End of the chalk'd Line be fatten'd with a Nail (or otherwife) in any Corner or Angle of the Back, as at $A$; then ftraining it to the Angle at $C$, ftrike the Diagonal Line $A C$, upon the Bottom of the Back; and ftraining it again to the Angle $D$, ftrike another Diagonal Line, as $A D$, and fo on for the Diagonal Line $G D$, \&c. Then having
 mark'd out all the Diagonals, the Perpendiculars may be thus found: Faften (as before) one End of the chalk'd Line in the Angle $B$, and then, by moving it to and fro upon the Stretch, find out the neareft Diftance between the Angle at $B$ and the Diagonal Line $A C$; and there ftrike a Line, and it will mark out the Perpendicular from $B$ to the Line $A C$, and fo on for the other Perpendiculars: Which being all mark'd out upon the Bot$t 9 m$ of the Back, meafure them and each Diagonal by a Line of

Inches, \&cc. and then the Area of that Back may be computed, as directed above.

And here, by the Way, it may be obferved, that the Number of Triangles will always be lefs by two, and the Number of the Diagonals lefs by three, than the Number of the Sides of any Right-lin'd Figure that is fo divided.

Having found (as above) the true Area of any Brewer's Back or Cooler (which, according to the Laws of Excile, ought always to be fix'd or immoveable) the next Thing will be to find out the true dipping or gauging Place in that Back, that fo the true Quantity of Worts may be computed or (caft up) at any Depth; which may be thus done.

1. When the Bottom of the Back is covered all over (of any Depth) either with Worts or Liquor (viz. Water) then dip it in eight or ten feveral Places (more or lefs according to the Largenefs of the Back) as remote and equally diffant one from another as you well can, noting down the wet Inches and decimal Parts of every Dip.
2. Divide the Sum of all thofe Dips or wet Inches by the Number of Places you dipp'd in, and the Quotient will be the mean Wet of all thofe Dips.
3. Laftly, find out fuch a Place by the Side of the Back (if you can) that juft wets the fame with that mean Dip, and make a Notch or Mark there, for the true and conftant Dipping-place of that Back. Then if any Quantity of Worts (which do cover the whole Back) be dipp'd or gaug'd at that Place, and the wet Inches fo taken be multiply'd into the Area of the Back in Gallons, the Product will fhew what Quantity (viz. how many Gallons) of Worts are in that Back at that Time, provided the Sides of the Back do ftand at Right Angles with its Bottom.

## Sect. 2. To find the Area of any Circular and Elliptical Superficies in Gallons.

1. I have demonftrated in Cap. 6, Part III, and Theorem 3, 5, 6. Part V. that the Periphery of the Circle whofe Diameter is Unity, or 1 , is $3,14159265{ }^{\circ} \mathrm{c}$. (or for common Ufe 3,1416) and that its Area is $0,78539816 \mathrm{E}^{\circ} \mathrm{c}$. (or $\mathrm{c}, 7854$ fere.)
2. Alfo, that the Peripheries of all Circles are in Proportion one to another as their Diameters are; and their Area's are in Proportion to the Squares of the Diameters. That is, as 1:3,1416: : the Diameter of any Circle: to its Periphery. And i: $0,7854:$ : the Square of the Diameter: to the Area.

Upon thefe two Proportions depend the Solutions of all the common or practical Queftions about a Circle. [Sce Page 4.08, 409.]

## PROBLEMIV.

The Diameter of any Circle being given in Inches, to find the Periphery.

Rule. $\left\{\begin{array}{l}\text { Multiply the given Diameter with 3, } 1416 \text {, and the Pro- }\end{array}\right.$ \{duct will be the Periphery requir'd. [See Prob. 1. p. 408.]
Example. Suppofe the Diameter of a Circle be 54,5 Inches, and it were requir'd to find its Periphery. Then $54,5 \times 3,1416$ $=171,21, \varepsilon^{\circ} c$. Inches is the Periphery requir'd. The Converfe of this is eafy, viz. by having the Periphery given, to find the Diameter. [See Prob. 3. Page 408.]
PROBLEMV.

The Diameter of any Circle being given (in Inches) to find its Area in Gallons.

RUle. $\left\{\begin{array}{l}\text { Multiply the Square of the propos'd Diameter into } \\ 0,7854, \text { and the Product will be the Area in Inches; } \\ \text { [See Probl. 2, P. 408.] that Area being divided by 282, } \\ \text { or } 23 \text { I, Eoc. the Quotient will be the Area required. }\end{array}\right.$
Example. Suppofe the given Diameter be 54,5 Inches as above. Firf, $54,5 \times 54,5=2970,25$. And $2970,25 \times 0,7854=$ 2332,83 the Area in Inches:
$\left.\begin{array}{l}\text { Then } 282 \\ \text { And } 231 \\ \text { Or 268,8 }\end{array}\right\} 233^{2,83}\left\{\begin{array}{r}8,2724 \\ 10,0988 \\ 8,6788\end{array}\right\}$ the Area in $\left\{\begin{array}{l}\text { Ale or BeerGallons. } \\ \text { Wine Gallons. } \\ \text { Corn Gallons. }\end{array}\right.$
But thefe Area's in Gallons may be much eafier found without knowing the Circle's Area in Inches, as above, by having the Square of the Diameter of that Circle whofe Area is one Gallon; which may be thus found, by Theorem 6, Page 407.
$0,785398: \mathbf{1}:: 282: 359,05$ the Square of the Diameter of the Circle whofe Area is 282 cubick Inches, viz. one Ale Gallon.

And from this Proportion will arife the following Divifors;
viz. $0,785398\left\{\begin{array}{l}282,000000(3,9,05 \\ 231,000000(294,12 \\ 268,800000(342,24\end{array}\right\}$ will be a Divijur for $\left\{\begin{array}{l}\text { A. G. } \\ \text { W.G. } \\ C . G .\end{array}\right.$

If the Square of the Diameter of any Circle be divided by any one of thefe conftant or fixed Divifors, the Quotient will fhew that Circle's Area in their refpective Gallons. As for Inftance, in the laft Circle, whofe Square of its Diameter is 2970,25 .


Now thefe Divifors may be turn'd into Multiplicators by dividing Unity or I, as in Page 435: Or rather by dividing the Area in Inches of that Circle whofe Diameter is 1.

That is, 0,785398 by 282 . Or by 23 I , $\varepsilon^{\circ} c_{c}$


Thefe Multiplicators are the refpective Area's of a Circle whofe Diameter is $\mathbf{1}$; and therefore, if the Square of the Diameter of any Circle be multiply'd with any of thefe Numbers, the Product will be that Circle's Area in Gallons of the fame Name:
Viz. $2970,25 \times 0,002785=8,2725$ the Area in A. G. as above. And $2970,25 \times 0,003399=10,0988$ the Area in W. Gal. \&c.

Thus you fee, that if the Diameter of any Circle be given in Inches, there are three feveral Ways of finding its Area in Gallons, and all equally true ; but that which is perform'd by the conftant Divifors is moft generally practis'd.

## PROBLEMVI.

The Tranfverfe (or longef Diameter) and the Conjugate (or fhortteft Diameter) of any Elliptical Superficies being given, to find its Area in Gallons. Multiply the two Diameters (viz. the Length and Breadth) together, and divide their Product by 359,05 Ruie. $\left\{\begin{array}{l}\text { for Ale Gallons, or 294, } 12 \text { for Wine Gallons, } \mathcal{E}_{c} c \text {. the }\end{array}\right.$ Quotient will be the Area requir'd. [See Theorem 7, Page 4 i2.
Example. Suppofe the longeft Diameter to be 73,5 Inches and the fhorteft Diameter to be 51,6 Inches; what will the Area be in Ale Gallons?

Firft $73,5 \times 51,6=3792,6$. Then 359,05$) 3792,6(10,56$ the Area in Ale Gallons. Or 204,12 ) $3792,6(12,89$ the Area in Wine Gallons, $\mathcal{E}^{\circ}$.

Note, The two laft Problems are of a great Ufe in Gauging of Worts amongft Country Victuallers, who generally brew but fhort Lengths of Ale (perhaps between 20 and 60 Gallons at a Brewing) and cool their Worts in feveral fmall open Veffels or Tubs, whofe Bafes or Bottoms are either a Circle, or an Ellipfis, having their Sides but low, and are moft commonly wider at the Top than at the Bottom.

Now a practical Way of computing the Quantity of Worts, that are at any Time in one of thofe open Tubs, is briefly thus: When the Tub is dry, find the true Area of its Bottom according to its Figure (as above) and either mark that Area on the Outfide of the Tub (which was the Way I generally us'd to order, becaufe the Victuallers did often lend their cooling Tubs one to another) or elfe number the Tub, and enter its Area (and its Number) into the Stock-book; then, when any of thofe Tubs hath Worts in it, take the Diameter of the Surface or Top of the Worts, and find that Area, adding it and the bottom Area together. If either the half Sum of thofe two Area's be multiply'd with the Depth of the Worts (taken as near the Middle of the Tub as you well can) or, if the Sum of thofe two Area's be multiply'd with half the Depth (fo taken) the Product will fnew the Quantity of thofe Worts very near the Truth.

## P R O B L E M VII.

The Diameter of any Circle, and the verfed Sine, viz. (the Height of any Segment, being given, to find the Area of that Segment in Gallons.

In the 410 th and 412 th Pages you have two Ways (and their Examples) of finding the Area of any Segment of a Circle in Inches; then if that Area in Inches be divided by 282, or $231 \mathcal{E}^{\circ} \mathrm{c}$.) the Quotient will be its Area in Gallons. But becaufe the Area of any fuch Segment may be readily found in Gallons (without finding its Area in Inches) by help of a Table of Segments, whofe Conftruction is laid down in the Problem, Page $411, \mathcal{O}^{\circ} c$. I have here inferted a Compendium of fuch a Table, which will ferve very well for common Practice, not only to find the Area of any Segment of a Circle in Gallons, but alfo to find the Number of Gallons that are either drawn out, or remaining in any Cylindrick Veffel lying along; or of any clofe Cafk (being firft reduced to a Cylinder) its Axis lying parallel to the Horizon, ufually call'd the Ullage of a Cafk; as fhall be fhew'd farther on.

A Table of the Segments of a Circle whofe Area is Unity or T , the Diameter being divided by parallel Chord-Lines into 100 equal Parts.

| V.S. | Sigment. | V.S. | Segment. |  | Segment. | V.S. | Segment. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0,0017 | 26 | 0,2066 | 51 | 0,5127 | 76 | 0,8155 |
| 2 | 0,0048 | 27 | 0,2178 | 52 | 0,5255 | 77 | 0,8262 |
| 3 | 0,0087 | 28 | 0,2292 | 53 | 0,5382 | $7^{8}$ | 0,8369 |
| 4 | 0,0134 | 29 | 0,2407 | 54 | 0,5509 | 79 | 0,8474 |
| 5 | 0,0187 | 30 | 0,2523 | 55 | 0,5635 | 80 | 0,8576 |
| 6 | 0,0245 | 31 | 0,2640 | 56 | 0,5762 | 81 | 0,8677 |
| 7 | 0,0,08 | 32 | 0,2759 | 57 | 0,5888 | 82 | 0,8776 |
| 8 | 0,0375 | 33 | 0,2878 | $5^{8}$ | 0,6014 | 83 | 0,8873 |
| 9 | 0,0446 | 34 | 0,2998 | 59 | 0,6140 | 84 | 0,8968 |
| 10 | 0,0520 | 35 | 0,3119 | 60 | 0,6265 | 85 | 0,9059 |
| 11 |  | 36 |  | 61 | 0,6389 | 86 | 0,9149 |
| 12 | 0,0598 | 37 | 0,324 0,3364 0,3486 | 62 | 0,6,89 | 87 | 0,9236 |
| 13 | 0,0764 | $3^{8}$ | 0,3486 | 63 | 0,6636 | 88 | 0,9320 |
| 14 | 0,0851 | 39 | 0,3611 | 64 | 0,6759 | 89 | 0,9402 |
| 15 | 0,004 1 | 40 | 0,3735 | 65 | 0,6881 | 90 | 0,9480 |
| 16 | 0,1.032 | 41 | 0,3860 | 66 | 0,7002 | 91 | 0,9554 |
| 17 | 0,1127 | 42 | 0,3956 | 67 | 0,7122 | 92 | 0,9625 |
| 18 | 0,1224 | 43 | 0,4112 | 68 | 0,7241 | 93 | 0,9692 |
| 19 | 0,1323 | 44 | 0,4238 | 69 | 0,7360 | 94 | 0,9755 |
| 20 | 0,1424 | 45 | 0,4365 | 70 | 0,74,7 | $9 ;$ | 0,98:3 |
| 21 | 0,1526 | 46 | 0,4491 | 71 | 0,7593 | 96 | 0,9866 |
| 22 | 0,163: | 47 | 0,4618 | 72 | 0,7708 | 67 | 0,9913 |
| 23 | 0,1738 | 48 | 0,4745 | 73 | 0,7822 | 98 | 0,9952 |
| 24 | 0,1845 | 49 | 0,4873 | 74 | 0.7934 | 99 | 0,9983 |
| 25 | 0,1955 | 50 | 0,5000 | 75 | 0,8045 | 100 | 1,0000 |

The Ufe of this Table of Segments depends upon the following Proportion,

As the Diameter of any propos'd Circle: is to 100 (the viz. Diameter of the tabular Circle):: fo is the Height of any Segment of the propos'd Circle:toa verfed Sine in the Table.
Then, if the tabular Segment, which ftands againft that verfed Sine, be multiply'd into the Circle's Area (either in Inches (1f Gallons) the Product will be the Area of the Segment requir'd [of the fame Name] viz. If the Circle's Area be Inches, the Segment will be Inches; if Gallons, the Sagment will be Gallons.

Example. Let the Diameter of the given Circle be $D A=62,5$ Inches, and the lleight of the Segment fought be $F A=20$ Inches; What will its Area be in Ale Gallons?

Firt, the Area of the whole Circle will be 10,8793 Ale Gallons (by Problem 5.) and the Proportion will fand thus, 62,5:100::20:32 the verfed Sine of the Table whofe Segment is
 0,2759 . Then, $10,8720 \times 0,2759=3$, corb Ale Gallons, being the Area of the Segment $B A G F$, as was requir'd. The like may be done for Wine Gallons, Corn Galtons, or Inches.

And, upon Occafion, the like Segments of any Ellipfis may be eafily found. See the Proportions in the Corollaries to the $7^{\text {th }}$ and 8th Theorems, Page 412, $\mathcal{E}^{\circ}$. to which I here, for Brevity's Sake, refer the Reader.
Sect. 3. To compute the Contents of fuch Veffels (viz. Tuns, $\Xi^{\circ}$ c.) as are in the Form of the following Solids.
Note, Before the young Gauger proceeds to thefe Computations, he fhould be well acquainted with fuch Solids as are defin'd in P. 402 and 403, and then he may eafily underftand what Sort of Figures are meant in the following Problems, without the Repetition of many Words.

## PROBLEMVIII.

To find the Content of any Prifm whofe Sides are Parallelograms what Form fosver its Bafe is of.
That is, to compute the Content (in Gallons) of any Tun, \&c. whofe Sides are Parallelograms which ftand upright, or at Right Angles with its Bottom.

Firft, find its folid Content in Inches, by Theorem 9, Page 414; then divide that Content by 282, or 231 , or by 268,8 ; the Quotient will fhew the Content in their refpective Gallons, viz. in Ale, Wine, or Corn Gallons.

Or elfe multiply the Content in Inches with 0,003546 , or $0,004329, \varepsilon^{\circ} \mathrm{c}$. [See the Multiplicators, Page 435] thofe Products will be the Content in their reppective Gailons.

Or otherwife thus:
Find the true Area of the Tun's Bafe or Bottom, as directed in Sect. 1, P. 435 ; that Area being multiply'd with the Tun's Height (viz. Depth within) will produce the Content in Gallons, as before.

1 take

I take the Work of this Problem to be fo very eafy, that it needs no Example.

## PROBLEM IX.

To find the Content of any Pyramid (in Galions) whole Bafe is bounded with Right Lines.

Every Pyramid is one Third-part of its circumfcribing Prifm, by Theorem 10, Page 415. Therefore, if the Area of the Bafe of any Pyramid, in Gallons, be multiply'd in one Third of its perpendicular Height ; or if one Third of that Area be multiply'd with the whole Height, either of thofe Products will be the Content of the Pyramid in Gallons, $\mathcal{F}^{\circ}$. But the Content of any fquare Pyramid may be eafily found in Gallons by this Rule :

Square the Side of its Bare, and multiply that Square with the perpendicular Height; then divide that Pro-
Rule. $\left\{\begin{array}{l}\text { duct by } 846=282 \times 3 \text { for Ale Gallons, or by } 693=23 \mathrm{r}\end{array}\right.$ $\times 3$ for Wine Gallons, or by $806,4=268,8 \times 3$ for Corn Gailons, the Quotient will be the Content requir'd.
Or, if you multiply the faid Product with 0,001182 for $A G$. or with 0,001443 for $W$. or, laftly, with 0,001241 for C. G. the Refult will be the Content requir'd, as before.

## PROBLEMX.

To find the Content (in Gallons) of the Fruftum of any fquare Pyramid, cut off by a Plain parallel to its Bafe.
Firtt, either by Theorem 15, Page 419, or Theorem 16, P. 420, find the propos'd Fruftum's Solidity in Cubick Inches; then divide that Content in Cubick Inches by 282 or $23 \mathrm{I}, \mathrm{F}^{\circ} \mathrm{c}$. and the Quotient will be the Content of the Fruftum in their refpective Gallons.

But, from the forefaid Theorem I5, there may be eafily deduced the following general Rule for finding the Content of the like Fruftum of any Pyramid, what Form foever its Bafes are of (fuppofing them to be parallel) whether they are alike or unlike. Firft, find the Area of each Bafe, (viz. the top and bottom Area's of the propos'd Fruftum;) then find a Geo-
Rule. metrical Mean between thofe two Area's (by Lemma I, Page 83;) the Sum of thofe two Area's and their Mean, being multiply'd into one Third of the Fruftum's Height, will produce the Content required.

## 444 Of prattat ©auging.

Example. Suppofe a Tun in the Form of the lower Fruftum of a Pyramid, whofe Bafes are Equilateral Triangles: Let the Side of the Top be 42 Inches, the Side of the Bottom be 63,4 Inches, and its Height [viz. Depth] be 33 Inches; What will the Content of that Tun be in Ale Gallons?

Firf, find the Area of that Bafe in Inches, by Probl. 7, P. 343; then find what thore Area's are in Ale Gallons, by Probl. 3, P. 436. Multiply thofe two Area's together and the fquare Root of their Product will be the mean Area, $\xi_{c}$. as in this Example :
Example. The $\left\{\begin{array}{c}\text { Top } \\ \text { Bottom } \\ \text { Mean }\end{array}\right\}$ Area is $\left\{\begin{array}{l}2,71 \\ 6,12 \\ 4,07\end{array}\right\}$ Ale Gallons.
Then $12,9 \times \frac{23}{3}=141,9 . \quad$ Or $\frac{12,9}{3} \times 33=141,9$ the Content required.

> PROBLEMXI.

## To find the Content of any right Cylinder in Gallons.

That is, to compute the Content of any round Tun, $\mathcal{E}^{\circ}$. whofe Diameters at Top and Bottom are equal, and at Right Angles with its Sides.

The Content of fuch a Tun may be found by Theorem II, Page 415 ; or otherwife by the following Rule. Multupiy the Square of the Diameter into the Height, Ruie. $\left\{\begin{array}{l}\text { and divide the Product by } 359,05 \text { (or multiply with } \\ 0,0027 \text { ) tecc. as in Page } 439, \text { that Quotient (or Pro- }\end{array}\right.$ $\{0,00275$ ) Eec. as in Page 439, that Quotient (or Pro(juct) will be the Content required.
Exam. Suppofe the Diamster ne 42,5, and the Height 31,5 Inches. Firft $42.5 \times 42,5=1606,25$ And $1806,25 \times 31,5=56896,875$. Then 359,05 ) 56896,875 ( 158,46 the Content in Ale Gal. छ'c.

## PROBLEMXII.

To find the Content of any Cone or round Pyramid in Gallons.
Becaufe every Cone is one Third of its circumfcribing Cylinder, [See Theorem 13, Page 416] therefore its Content may be truly found by the following Rule.

Multiply the Square of the Diameter of its Bafe into the perpenuicular Height, then divide their Product
Rule. $\left\{\begin{array}{l}\text { by } 107,15=359,05 \times 3 \text { for Ale Gallons, or by } \\ 082,15\end{array}\right.$ $882,36=294,12 \times 3$ for Wine Gallons, $\sigma^{\circ} c$, and the Quotient will be the Content required.

Or if the faid Product be multiply'd with $0,000928=\frac{0,002785}{3}$ or with $0,001133=\frac{0,00349}{3}$ thofe Products will be the Content in their refpective Gallons.

Example. Suppofe the Diameter of the Bafe be 42,5, and the perpendicular Height be $3 \mathbf{1 , 5}$ Inches, what will the Content be in Ale Gallons?
(as before.
Firft $42,5 \times 42,5=1806,25$. And $1806,25 \times 31,5=56896,875$ Then 1077,15$) 56896,875(52,82$. Or $56896,25 \times 0,000928$ $=52,82$ the Content in Ale Gallons. And fo on for Wine or Corn Gallons.

## PROBLEMXII.

To find the Content of the lower Fruftum of any Cone in Gallons. That is, to compute the Content of any round Tun, $\mathcal{E}_{c}$. whofe Diameters at Top and Bottom are parallel, but unequal.

The Content of fuch a Tun may be found by the Rule at Problem 10; but from Theorem 16, Page 420 , 'twill be eafy to deduce this following Rule.

To the triple Product of the Top and bottom Diameters, add the Square of their Difference; multiply that Sum
Rule. into the Height (or Depth): then divide the laft Product by 1077, 15 for Ale Gallons, or by 882,36 for Wine Gallons; the Quotient will be the Content requir'd.
Example. Suppofe the Diameter at the Top to be 52,4 Inches, the Diameter at the Bottom 45,6, and the Height 30 Inches. Firft, $5^{2,4 \times 44,6=2337,04 ; \text { and } 2337,04 \times 3=7011,12}$ Alfo, $5^{2}, 4-44,6=7,8 ;$ Add Alfo, $52,4-44,6=7,8 ;$ and $\left.7,8 \times 7,8=60,8_{4}\right\}^{\text {Add }}$

$$
\text { The Height } 30 \times \quad \overline{7071,96}=212158,8 .
$$

$\left.\begin{array}{l}\text { Then } 1077,15) 212158,8(196,96 \\ \text { Or } 212158,8 \times 0,000928=196,96\end{array}\right\}$ the Content in Ale Gallons.
And fo on for either Wine or Corn Gallons, as Occafion requires. But if the Tun (or Veffel) be not truly circular, that is, if either its Top or Bottom (or both of 'em) be Elliptical, whether they are alike or unlike, it matters not, the Content of fuch a Tun may be truly found by the general Rule at Problemio.

## PROBLEM XIV.

The Axis or Diameter of any Sphere or Globe being given in Inches to find its Content in Gallons.
Every Sphere is two Thirds of its circumicribing Cylinder, by Theor, 18, Page 423 ; from whence and Theor. 20, Page 426, 'tis proved,
proved, that if the Cube of the Axis of any Sphere (taken in Inches) be multiply'd into 0,5236, the Product will be the Content of that Sphere in Inches. Confequently, if that Content be divided by 282 , or by 23 I , छgc. the Quotient will be the Content in Gallons.

But thofe two Works of multiplying with 0,5236 , and then dividing by 282 , or by $23 \mathrm{I}, \mathcal{E}^{\circ} c$. may be contracted into one.

Or $0,523^{6}\left\{\begin{array}{l}282 \\ 23 i\end{array}\left\{\begin{array}{l}53^{8,57} \\ 44^{1,17}\end{array}\right\}\right.$ will be a Divifor for $\left\{\begin{array}{l}\text { Ale Gallons. } \\ \text { Wine Gallons. }\end{array}\right.$ From hence arifes this following Rule.
If the Cube of the Axis of any Sphere be divided by $53^{8,57}$; or multiply'd with 0,001856 : or divided by
Rule. $\{44 \mathrm{I}, 17$; or elfe multiply'd with 0,002266 ; the Quotient, or Product, will be the Sphere's Content in their refpective Gallons.
Example. Suppofe the Axis or Diameter of a Sphere or Globe be 2 Inches, how many Ale Gallons may it hold?

Here $22 \times 22 \times 22=10648$; and 538,57 ) 10648 ( 19,76 A. G. Or $10648 \times 0,001856=19,76$ Ale Gal. the Content required. And fo for either Wine or Corn Gallons, as Occafion requires.

## PROBLEMXV.

To find the Content of a Segment of $a$ Sphere in Gallons.
In the Scholium, P. 424, there are two Theorems for refolving this Problem according to the Data.

1. If the Diameter of the Segment's Bafe and its Height are given, the Content may be found by the firlt of thofe Theorems, which gives this Rule:
$\left\{\begin{array}{l}\text { To the Triple Square of balf the Diameter add the } \\ \text { Square of the Height; then multiply that Sum in }\end{array}\right.$ Rule 1. $\left\{\begin{array}{l}\text { Square of the Height; then multiply that Sum into }\end{array}\right.$ the Height, and divide the Product by 538,57 for $A G$, or by 441,17 for $W G$, \&cc. as above.
2. But if the Axis of the Sphere and the Height of the Segment are given, the Content may be found by the Second of thofe Theorems.
Rule 2. $\left\{\begin{array}{l}\text { From the triple Product of the Axis into the Height, } \\ \text { fubtract twice the Square of the Height; then mul } \\ \text { tiply the }\end{array}\right.$ tiply the Remainder into the Height, and divide that Product by $538,57, \mathcal{E}^{\circ} \mathrm{c}$. as in the laft Problem.

Either of thefe Rules will produce the Content of the Segment in Gallons.

Example. Suppofe the Diameter of the Segment's Bafe be 28 Inches, and its Height be 8 Inches, what may it contain in Ale Gallons?

Firft 2) 28 (14. Then (by Rule 1.) $14 \times 14 \times 3=588$. And $6 \times 6=36$. Next $588+36=624$. Again $624 \times 6=3744$ 。 Laftly, $53^{8,57)} 3744$ ( 6,95 the Content required.

Note, This Problem may be of Ufe in Gauging the Crowns of Brewers Coppers, $\mathcal{O}^{\circ} \mathrm{C}$.

Sect. 4. The Practical Method of Gauging any fix'd Tun or Copper, and making a Table to hew what it will bold at every Inch deep, ufually call'd Jnching of a $\mathcal{T} u n$, \&c.
Firft, you muft know, that moft (if not all) Brewers Tuns are fo fix'd as to lean a little for Conveniency of cleanfing their Drink, which is ufually call'd the Drip or Fall of the Tun. Now this Drip or Fall of any Tun is the Hoof of fuch a Solid as that Tun is fuppos'd to reprefent, and under that Confideration it may be found, as in Theor. 16, P. 420: But the practical (and indeed the beft) Way is, to meafure into the Tun (when 'tis dry) fo much Liquor as will juft cover its Bottom; for by that means you do not only find the true Fall, but alfo a true harizontal or level Plain over the Bottom of the Tun; from which if the Depth of the Tun (viz. the neareft Diftance from the Top of the Tun to the Surface of the Liquor) be fet off upon every one of its Sides, you will then have a true parallel Plain at the Top of the Tun to that of the Liquor. Then, if the Sides of the 'Tun are ftreight from the Top to the Bottom, take as many Dimenfions in the aforefaid two Plains as are needful to find the true Area of each; and by thofe two Area's and the forefaid Depth find fo much of the Tun's Content (by the general Rule at Problem X.) as is betwixt thofe two Plains.

Next, to inch that Tun, divide the Difference between the Top and Eottom Area's by the aforefaid Depth, and the Quotient will be an Addend or fixed Number; which being added to the leffer Area, the Sum will be the Area of the next Inch; and, being added to that Area, their Sum will be the Area of the third Inch; and fo on from Inch to Inch, until the Area of every fingle Inch be found; the Sum of thofe Area's (if the Work be true) will amount (or be equal) to the Content found, as above. And if
the Tun's Drip or Fall be added to the Sum of all thofe Area's, that Sum will be the whole or full Content of that Tun.

Now, from hence it muft needs be eary to conceive, that if 1 , 2, 3, or any Number of thofe Area's accounted from the Bottom, be added to the Fall, that Sum will thew the Quantity of Liquor or Drink that is in the Tun, to fuch a Numver of wet Inches from the Bottom as there were Area's added together Or, if the Sum of any Number of thofe Area's (being accounced from the Top) be fubtracted from the Tun's whole Content, the Remainder will mew what Quantity of Liquor or Dr:nk is in the Tun, when there is fuch a Number of dry Inches from the Top as there were Area's fubtracted.

This being well confider'd, it will be eafy to make a Table either to every wet or dry Inch of any regular Tun (viz. whofe Sides are ftreight from Top to Bottom) what Form foever its Bafes are of, and whether it ftand upon the greater or leffer Bafe.

But if the Sides of the Tun are irregular (viz. not freight from its Top to the Bottom) then the beft and eafieft W ay will be to divide or part the Tun into feveral Fruftums, each of ten Inches deep; and finding the Content of every fingle Fruftum, by taking the Diameters in the Middle of every one of thofe ten Ir.ches (that is, the firft Diameter at 5 Inches from the Top; the fecond Diameter at 15 Inches from the Top, $\sigma^{\circ} c$.) and multiplying their refpective Area's with 10 , (which is done by only removing the feparating Comma's one Place forward to the right Hand) if the Sum of all thofe Fruftums be added to the Fall, (as before); that Sum will be the whole Content of the Tun.

Note, If you take the Height of the'forefaid ten Inch Fruftums in the Side of the Tun, you muft allow for the Difference between the flant Height and the Perpendicular Height in every Fruftum.

Laftly, If from the whole Content of the Tun you fubtract the mean Area of the firft Fruftum ten Times, and from the Remainder fubtract the mean Area of the fecond Fruftum ten Times, and from the laft Remainder fubtract the mean Area of the third Fruflum, $\underbrace{\circ} c$. until there remain nothing but the Fall or Hoof of the Tun, you will then by that Means have a Table that will thew what Quantity of Drink is in the Tun to any Number ofdry Inches.

And this is alfo the Method of Gauging and Inching Brewers Coppers, viz. by firf meafuring into the Copper fo much Liquor as will juft cover its Crown, and then dividing its perpendicular Height into Fruftums, and its Sides into four equal Parts; that fo srois Diameters may be taken in the Middle of each ruftum:

## But

but if the Copper be much wider at the Top than at the Bottom, and its Sides fpheroidal or arching, as generally all large Coppers are ; then, inftead of taking thofe mean Diameters in the Middle of every ten Inches, as above, you muft take them in the Middle of every fix Inches, and proceed on as before.

Now the Quantity of Liquor, that would cover the Crown of the Copper, may be found without meafuring it, as above. In order to that, I do fuppofe the Crown to be the Segment of a Sphere, and the lower Part of the Copper wherein the Crown arifeth, to be the Fruftum of a parabolick Conoid; then, if the Diameter at the Top of the Crown, and its perpendicular Height are given, the Quantity of Liquor may be found by this following Rule :

RULE. $\{$From the Area of the Plain at the Top of the Crown fubtract $\frac{11}{3}$ of the Area of the Crown's Height ; the Remainder, being multiply'd into half the Height of the Crown, will produce the Quantity or Number of Gallons that will cover the Crown.

This Rule is deduced from Scholium, Page 424, and Theorem 15. Page 430.

SecZ. 5. To compute the Content of any clofe Cafk in Gallons, viz. of any Butt, Pipe, Hoghhead, Barrel, $E^{\circ} c$.
In order to perform this difficult Part of Gauging, the three following Dimenfions of the propofed Cafk muft be truly taken in Inches, and Decimal Parts of an Inch.
Viz. $\left\{\begin{array}{l}\text { The Bulge or Bung Diameter within the Cafk. } \\ \text { Either of the Head Diameters fuppofing them both equal. } \\ \text { And the Length of the Cafk within. }\end{array}\right.$
Note, In taking of thefe Dimenfions, it muft be carefully obferved,
I. That the Bung-hole be in the Middle of the Cafk; alfo that the Bung-ftaff and the Staff over-againft the Bung-hole are both regular or even within.
2. That the Heads of the Cafk are equal and truly circular; if fo, the Diftance between the Infide-of the Chine to the Outfide of its oppofite Staff will be the Head Diameter within the Cafk, very near.
3. With a fliding pair of Calipers (made on purpofe for that Ufe) take the fhorteft Diftance at Length between the Outfides of the two Heads; (fuppoling them even) from that Length fubtract $I_{2}^{1}$ Inch (more, or lefs, according to the Largenefs of the Mmm

Cafk）for the Thicknefs of the two Heads，the Remainder will be the Length of the Cafk within．

Now by thefe Dimenfions，one would fuppofe the Content of the Cafk were perfectly limited；but it will be eafy to perceive， by the following Figure，that the Diameters（abovefaid）and the Length of one Cafk may be equal to thofe of another，and yet one of thofe Cafks may contain or hold feveral Gallons more than the other．

As for Inftance，fuppofe the annex＇d Figure $A B C D G F$ ，to reprefent a Cafk；then it is plain，that， if the outward and curved Lines $A B C$ and $F G D$ are the Bounds or Staves of the Cafk，it muft needs hold more than if the inner ftreight or prick＇d Lines were its Bounds or Staves；and yet the Bung Diameter $B G$ ，Head Diameter $C D$ and $A F$ ，and the Length $L H$ ，are
 the fame in both thofe Cafks．

Whence it plainly appears，that no one certain or general Rule can be prefcrib＇d to find the true Content of all Sorts of Cafks， and therefore Gaugers do ufually fuppofe every Cafk to be in Form of fome one of thefe following Solids．
Viz．$\left\{\begin{array}{l}\text { I．The middle Zone or Fruftum of a Spheroid．} \\ \text { II．The middle Zone or Fruftum of a Parabolick Spindle．} \\ \text { III．The lower Fruftums of two equal Parabolick Conoids．} \\ \text { IV．The lower Fruftums of two equal Cones．}\end{array}\right.$
Now the Way of Gueffing at the Cafk＇s Form，and computing its Content，according to its fuppos＇d Form，I fhall here fhew in their Order．

I．If the Staves of the Cafk are very much curved or arching（as the outward Lines of the laft Figure）then the Cafk is fuppos＇d to be in the Form of the midcle Zone or Fruftum of a Spheroid， whofe Content may be computed，by Theorem 22．Page 427， which gives thefe two Rules．

RUlE 1．$\left\{\begin{array}{l}\text { Square of the Head Diameter；multiply that Sum in－} \\ \text { to the Length，and divide the Product by 1077，150 } \\ V_{i z .}, 8197 \times 282 \text { for Ale Gallons；and by } 882,36 . \\ V_{i z}, 3,8197 \times 231 \text { for Wine Gallons．Or thus，}\end{array}\right.$

## Of 1 nattical ©auging.

 Third of the Length, and the Product will be the Content in their refpective Gallons.Example 1. Suppofe a Cafk in the Form of the middle Zone of a Spheroid, whofe Bung Diameter is 31,5 , Head Diameter 24,5, and its. Length 42 Inches.
Firft $31,5 \times 31,5 \times 2=1984,5$. And $24,5 \times 24,5=600,25$
Again 1984,5+600,25 $=2584,75$. And $2584,75 \times 42=108559,5$ Then 1077,15) $108559,5(100,78$ the Content in Ale Gallons. And 882,35) 108559,5 (123,03 the Content in Wine Gallons. Or thus, by the Second Rule.
Bung Diameter 31,5 twice its Circle's Area is 5,5270
Head Diameter 24,5 its Circle's Area is 1,6718
The Length 42 divided by 3 is $14 . \quad \overline{7,1988}=$ their Sum. Then $7,1988 \times 14=100,78$, the Content in A. Gallons as before. And fo the Content in Wine Gallons may be found.
II. If the Staves of the Cafk are not quite fo much curved or arching, as was fuppos'd before, the Cafk is then taken for the middle Fruftum of a parabolick Spindle, and its Content is computed, as by Theorem 27. Page 432. Which gives this Rule.

To twice the Square of the Bung Diameter add the Square of the Head Diameter ; from their Difference fubtract four Tenths of the Square of the D.fference of the Diameters; multiply the Remainder into the Length, and divide the Product by $1077,15, \varepsilon_{6}{ }^{\circ}$. as Labove.

Example 2. Suppofe the Dimenfions the fame as before. Then $31,5 \times 31,5 \times 2:+24,5 \times 24,5=2584,75$. And $31,5-$ $24,5=7$. Again $7 \times 7 \times 0,4=19,6$. And $2584,75-19,6 \times 42=$ 107736,3. Then 1077,15 ) 107736,3(100,01 the Cont. in A. $\bar{G}$. $\varepsilon^{\circ} c$, for $W$. $G$.
III. When the Staves of the Cafk are but very little curved or arching, then it's fuppos'd to be in the Form of the Fruftums of two equal parabolick Conoids, abutting or joining together upon one common Bafe at the Bulge, and the Content may be found by Theorem 25. Page 430. which gives thefe Rules.

\{To the Square of the Bung Diameter add the Square of the Head Diameter; multiply their Sum into the
RULEI. Leng:h, and divide the Product by 918,08 (viz. $2,5464 \times 282$ ) for Ale Gallons: or by 588,22 (viz. $2,546+\times 231$ ) for Wine Gallons. Or thus,

Rule 2. $\{$To the Area of the Bung Circle add the Area of the Rule 2. Head Circle ; multiply the Sum into half the Length, and the Product will be the Content required.

Example. 3. With the fame Dimenfions as before. Then $315 \times 31,5+24,5 \times 24,5=1592,5$. And $1592,5 \times 42=66885$ And 718,08 ) 66885 ( 93,01 the Content in Ale Gallons. Or 588,22) 66885 ( 113,7 the Content in Wine Gallons.
IV. If the Staves of the Cafk are ftreight from the Bulge to the Head, as the inner prick'd Lines in the laft Figure (if fuch a Cafk can be made) it is then taken for the lower Fruitums of two equal Cones, abutting or joining together upon one common Bafe at the Bulge. And its Content may be computed as at Problem I3. Page 445. or by Theorem 15. Page 419. Thus,

RUIE. $\left\{\begin{array}{l}\text { To the Sum of the Squares of the Head and Bung Dia- } \\ \text { meters add their Produat; then multiply that Sum into } \\ \text { the Lenght. and divide the laf Product by ron7, } 1 \text {, } \\ \text { Or by } 882,36 \text {. The Quotient will be the Content, }{ }^{5} \text {. }\end{array}\right.$ Example 4. With the fame Dimenfions as before.
Firf $3^{1,5 \times 31,5+24,5 \times 24,5+31,5 \times 24,5=2364,25}$ And $2364,25 \times 42=99298,5$. Then 1077,15 ) $99298,5(92,18$ the Content in Ale Gallons, and fo on for Wine Gallions.

Thus you have the Methods of computing the true Contents of the four Solids, in whofe Form all Cafks are fuppos'd to be. And by the Exam. ples it appears, that four fuch Cafks as have their Dimenfions all equal, and the fame with thofe above-mention'd, their Contents will be as in the Margin.

| Galions. |  |
| :---: | :---: |
| I. 100,78 | Differ. |
| II. 100,01 | 77 |
| III. 93,01 |  |
| IV. 92,18 | 0,83 |

From the Difproportion or Inequality of thefe Differences it will be eary to conceive, that there may be feveral Cafks whore Contents cannot be truly found, according to the aforefaid fuppos'd Forms; and therefore, in order to rectify the faid Inequalities, fome Authors (that have written upon this Subject) have laid down Theorems of their own Invention ; and yet call'd them
by thefe Names) others have propos'd Tables for the fame Purpofe. But fince it is fo, that we can only guefs at the Truth, the plaineft and eafieft Way is to be preferr'd in Practice; and that is, by finding fuch a mean Diameter as will reduce the propos'd Cafk to a Cylinder.

Multiply the Difference between the Head and Bung Diameters, with 0,7 . or with 0,65 . or with 0,6 . or with
Thus, $\{0,55$. according as the Staves of the Cafk are more or lefs arching; add the Product to the Head Diameter, and the Sum will be the mean Diameter required. Then (find the Content, as at Prob. 11. Page $444^{\circ}$
Example. With the fame Dimenfions as before. Then the Bung Diameter lefs the Head Diam. is $31,5-24,5=7$.
$M D$.
AG. Cont.
$24,5+\left\{\begin{array}{ll}7 \times 0,7=29,40 \text { its Area } 2,4073 \times 42=101,10 \\ 7 \times 0,65=29,05 & 2,3504 \times 42=98,71\end{array}\left|\begin{array}{l}2,39 \\ 7 \times 0,6=28,70 \\ 7 \times 0,55=28,35\end{array} 2,1 \times 42=96,355\right| 2,36\right.$
From thefe it may be obferv'd, that the Difference between each Cafk's Content is regular, and very near equal; which plainly fhews, that there is not fo much Room left for Error this Way of computing their Contents, as was by the aforefaid Forms.

Now the firft of thefe four (viz. with 0,7 ) is very commonly ufed among Gaugers for all Sorts of Cafks; but 1 did never gauge any Cafk that would contain quite fo much as that Rule did make it; and the Reafon doth appear very plain from Theorem 22. Page 427. being compar'd with Theorem 19. Page 426. and the laft Figure; viz. that no (Cafk being regularly made) can hold more than the middle Fuftrum of a Spheivid. But I always found by Expurience, that if the fecond and third of thefe Rules (viz. with 0,65 and 0,6 ) were duly apply'd, they would anfwer very near the Truth amongft the common Sort of Cafks; and the fourth R le (viz. with 0,55 ) will come pretty near the Truth in computing the Contents of Cafks, whofe Staves are almoft ftreight Letwixt the Head and Bung, viz. fuch as Wine Pipes, $\varepsilon_{0} c$.
Sect. 6. To find what Quantity of Liquor is either drawn forth, or remaining in any fpheroidical Cafk, ufually call'd the Ullage of a Cafk; hath two Cafes.
Cafe I. To find what Quantity of Liquor is in the Cafk, when its Axis is perpendicular to the Horizon, viz. when it itands upright upon one of its Heads.

In order to perform this the eafieft Way, it will be convenient to know how to calculate the Area of any Circle betwixt the Bung and Head, whofe Diftance from the Bung or middle of the Cafk is given. Now that may be done by this Proportion.

As the Square of half the Length of the Cafk: is to the Difference between the Bung and Head Area's : : fo is the
Viz. $\left\{\begin{array}{l}\text { Square of any Circle's Diftance from the Bung: to the Dif- }\end{array}\right.$ ference between the Bung Area, and the Area of the Circle, viz. the Area of the Liquor's Surface.

## Demonfration.

\{ $H=$ Half the Length of the Cafk
Let $\{D=$ Half the Bung Diameter. $d=$ Half the Head Diameter.

And $\left\{\begin{array}{c}P=\text { the Diftance of any Circle from } \\ \text { the Bung } \\ a=H a l f \text { the Diameter of that Circle. }\end{array}\right.$


Then according to the common Property of the Ellipfis, Page 368 , it will be,
$B B: D D:: B B-H H: d d$. And $B B: D D:: B B-P P: a a$. Ergo $\left\{\frac{D D H H}{D D-d d}=B B\right.$. And $\quad\left\{\frac{D D P P}{D D-a a}=B B\right.$,
Confequently, $\left\{\frac{D D H H}{D D-d d}=\frac{D D-a a}{D D P P}\right.$.
This 压quation, being brought out of the Fractions, will become $D D H H$ - a a $H H=D D P P d d P P$, which gives this Analogy $H H: D D-d d:: P P: D D-a a$. Then $D D-a a$, being fubtracted from $D D$, will leave $a$ a. But Circles Area's are in Proportion to the Squares of their Diameters, by Theorem 6. Page 407. Therefore, 'ic. O. E. D. Then, from the Bung Area fubtract one third Part of the aforefaid Difference, viz. between the Bung Area and the Area of the Liquor's Surface; multiply the Remainder with the Liquor's Diftance from the Bung, and the Product will fhew what Quantity of Liquor is either above or under half the Content of the Cafk.

Example. Let us fuppofe a Cafk of the fame Dimenfions with that in the firft Example, Page 451, and let it be required to find what Quantity of Liquor is in it (of Ale Meafure) when there is but 9 Inches wet. Here half the Length of the Cafk is $2 I$

Inches, whofe Square is 441, and the Liquor's Diftance from the Bung is $21-9=12$. Its Square is 144. The Difference between the Bung and Head Area's is $1,0917(=2,7635$ 1,6718.) Then 441: 1,0917:: 144:0,3564.
And 2,7635-0,3564 $=2,4071$ the Area of the Liquor's Surface.
Again 3) $0,3564(0,1188$. And $2,7635-0,1188=2,6447$ Then $2,6447 \times 12=31,7364$, what the Cafk wants of being half full. Confequently $50,39-31,73=18,66$ will be the Quantity of Liquor in the Cafk at 9 Inches wet in Ale Gallons.

And if the Cafk had wanted but 9 Inches of being full; then $50,39+31,73=82,12$ would have been the Quantity of Liquor in the Calk.

Note, becaufe the two firf Terms (viz. 441 and 1, c917) in the Proportion are fix'd, viz. continue the fame for any Diftance, 'twill be very eafy to calculate the Area's of all the Circles betwixt the Bung and Head to every Inch, and by that Means to make a Table that will fhew what Quantity of Liquor is either drawn out or remaining in the Cafk at any Depth.
Cafe 2. To find what Quantity of Liquor is in any Cafk, when its
Axis is parallel to the Horizon, viz. when it lies along.
There are Variety of Tables to be found in Books of Gauging for this Purpofe ; but I always obferved, that the following Method of computing the Ullage, by a Table of the Segments of a Circle, came very near the Truth in all Sorts of Cafks, which is thus perform'd:

1. By the Bung and Head Diameters, find fuch a mean Diameter as you judge will reduce the propos ${ }^{\circ} \mathrm{d}$ Cafk to a Cylinder, by the Method laid down in Page 453. And then find its full Content, as in thofe Exampies.
2. From the Bung Diameter fubtract the mean Diameter and half the Difference, (viz. divide it by 2.)
3. From the wet Inches of the propos'd Ullage, fubtract the faid half Difference, and call it $x$; then obferve this Proportion.
Viz. $\left\{\begin{array}{l}\text { As the mean Diameter: is to } 100 \text { (the Diameter of the } \\
\text { tabular Circle):: fo is the laft Difference (viz. } x \text { ): to a } \\
\text { verfed Sine in the Table. (Page 441.) }\end{array}\right.$
Then if the tabular Segment, which ftands againft that verfed Sine, be multiply'd into the Content of the Cank, the Product will Shew the Ullage, viz. what Quantity of Liquor is either in the Cafk, or drawn forth.

Example 1. Let the Cafk be that of the fecond Sort, in Page 453. viz. whofe Bung Diameter is 31,5 Inches, mean Diameter 29,05, and the Content 98,71 Ale Gallons; and fuppofe there were 10,5 Inches wet in it, it is required to fund the wet and dry Gallons?

Here $31,5-29,05=2,45$; its half is 1,12 . And $10,5-1,22=9,28$ Then 29,05:100::9,28:0,319=V. Sine; its Segm. is 0,2748 And $93,71 \times 0,2748=27,12$ the Number of wet Gallons.

Again $31,5-10,5=21$ the dry Inches; and $21-1,22=19,78$ Then 29,05:100::19,78:0,68; its Segment is 0,7241 And $98,71 \times 0,7241=71,48$ the Number of dry Gallons. Proof $71,48+27,12=98,6$ the Contents of the Cafk very near; which plainly fhews the Truth of this Method.

Thus far may fuffice concerning Gauging of Backs or Coolers, Tuns, Coppers, and Cakzs, E'c. To which I fhall only add, that as the Contents of all Brewers Utenfils are to be computed by the Ale Gallons, fo the Contents of all Diftillers Utenfils (viz. all their Wafh-Backs, Stills, and Cafks, $E^{\circ} c$.) mult be computed by the Wine Gallon.

And in gauging of Malt (upon which there is now a Duty of four Shillings per Buflel) you muft obferve, That a Corn or Malt Bufhel doth contain 21 50,42 cubick Inches; (See Page 42.) and therefore in gauging of Malt-Cifterns, or other Veffels, 2150,42 will be a conitant or fixed Divifor for finding the Area's of right-lin'd Figures in Bufhels at one Inch deep, and $273^{8}$ will be a conftant or fix'd Divifor for finding the Area's of circular Figures.

I have omitted the Bufinefs of gauging Mafh-Tuns, and taking an Account of the Goods or Grains, in order to eftimate what Quantity of Worts were produc'd from them, $\mathcal{E}^{\circ}$. , becaufe I could never find (by ail my Obfervations) any Certainty therein; nor is it poffible there fhould be any, by Reafon of the great Difference that is in Malt (and its Grinding too) for the beit Malt (well ground) will yield or produce the moft Worts, and leaft Grains; on the contrary, bad Malt (being ill ground) yields the leall Worts and moft Grains.

## SUPPLEMENT

Not in any of the former Editions of this
B


Containing the

## $\begin{array}{lllllll}\mathrm{H} & \mathrm{I} & \mathrm{S} & \mathrm{T} & \mathrm{O} & \mathrm{R} & \mathrm{Y}\end{array}$ <br> O F

## LOGARITHMS,

W I TH

Several eafy Methods of Conftructing the Tables of the Logarithms and Sines, Gic. Alfo the Demonftration of the Axioms and Doctrine of Plane

## TRIGONOMETRY.

Extracted from the
Pbilofophical Transactions and the Works of Dr. KEIL, RONAYNE, WARD, \&c.

Cuncta Trigonus babet, fatagit quae docta Malhefis, Ille aperit claufum quicquid Olympus babet.

## T H E

## PREFACE.

THE Matbematicks formerly received conjiderable Advantages; firft, by the Introduction of the Indian Cbaracters, and afterwards by the Invention of Decimal Fractions; yet bas it fince reaped at leaft as muich froin the Invention of Logaritbms, as from both the other two. The Ufe of thefe, every one knows, is of the greateft Extent, and runs tbrough all Parts of Mathematicks. By their Means it is that Numbers almoft infinite, and fuch as are otherwife impracticable, are managed with Eafe and Expedition. By their Afjitance the Mariner fleers bis Veffel, the Geometrician invefigates the Nature of the bigber Curves, the Afronomer determines the Places of the Stars, the Pbilofopber accounts for other Pbanomena of Nature; and lafly, the UJurer computes the Interefl of his Money.

The Subject of the following Trcatife bas been cultisated by Mathematicians of the firll Rank; fome of whom, taking in the whole Doctrine, hawe indeed wrote learnedly, but fiarcely intelligible to any but Mafiers. Otbers, again, accommodating themfelves to the Apprebenfion of Novices, bave felected out fome of the moft eafy and obvious Properties of Logaritbmis, but bave left their Noture and more intimate Properties untouch'd. My Defign therefore, in the following Tract, is to fupply robat jeemed ftill wanting, viz. to difcover and explain the Doctrine of Logaritbms, to thofe who are not yet gat biyond the Elements of Algebra and Geomity.

The rvonderful Invention of Lagaritbms we owe to the Lord Neper, who was the firfit tbat con/tructed and publifhed a Canon thereof, at Edinburgh, in the Year 1614. This was very gracioufly received by all Matbematicians, who were immediately fenfible of the extreme UJefulne/s thereof. And tho it is ufual to bave various Nations contending for the Glory of any notable Invention, yet Neper is univerfally allow'd the Inventor of Logaritbms, and enjoys the whole Honour thereof without any Rival.

The fanee Lord Neper afterwards invented another and wore commodious Form of Logaritbms, which be afterwards communicated to Mr. Henry Briggs, Profeffor of Geometry at Oxford, who was bereby introduced as a Sharer in the completing thereof: But, the Lord Neper dying, the whole Bufinefs remaining was devolved upon Mr . Briggs, who, with prodigious Application, and an uncommon Dexterity, compafs'd a LogaritbmicCianon, agrecable to that nere Form for the firlt twenty Cbiliads of Numbers (or form I to 20000) and for eleven otber. Cbiliads, viz. from 90000 to 101000 . For all rebich Numbers be calculated the Logaritions to fourteen Places of Figures. Tbis Canon woas publifid at London in the Year 1624.

Adrian Vlacq publifbed again this Canon at Goudx in Holland in the Year 1628, with the intermediate Cbiliads before omitted, filled up according to Briggs's Prefcriptions; but thefe Tables are not fo ufeful as Briggs's, becaufe the Logaritloms are continucd but to 10 Places of Figures.

Mr. Briggs alfo bas calculated the Logaritbms of the Sines and 'Tangents of every Degree, and the bundredth Parts of Degrees to 15 Places of Figures, and bas Jubjoined to them the natural Sines, Tangents, and Secants,
to 15 Places of Figures. The Logaritbms of the Sines and Tangents are called Artificial Sines and Tangents, but the Sines and Tangents themfelves are called natural. Thefe Tables, together with their Confruction and UJe, were publifb'd after Briggs's Death, at London, in the Vear 1633 , by Henry Gellibrand, and by bim called Trigonometria Britannica.

Since then, there bave been publifbed, in feveral Places, compendious Tables, wherein the Sines and Tangents, and their Logarithms, confift of but Jeven Places of Figures, and wherein are only the Logaritbms of the Numbers from I to 100000, webich may be fufficient for moft Ufes.

The beft Difpofition of thefe Tables, in my Opinion, is that, firft thought of by Nathaniel Roe, of Suffolk; and, with fome Alterations for the better, followed by Sherwin in bis Mathematical Tables publifbed at London in 1705; wherein are the Logaritbms from 1 to 101000 confifting of 7 Places of Figures. To which are fubjoined the Differences and proportional Parts, by Means of wobich may be found eafliy the Logaritbms of Numbers to 10000000, obferving at the jame Time that thefe Logaritbms confitt only of 7 Places of Figures. Here are alfo the Sines, Tangents, and Secants, with the Logaritbms and Differences for every Degree and Minute of the Quadrant, with fome other Tables of UJe in practical Mathematicks.

THE

## THE

## CONSTRUCTION

## O F

## LOGARITHMS.

THESE moft excellent and ufeful Numbers were firft invented by the famous and never to be forgotten Lord Neper, Baron of Merchifon in Scotland, aforefaid) Ann. 1614.) who ingenioufly contriv'd to perform Multiplication and Divifion of Natural Numbers, by only adding or fubtracting certain Artificial Numbers, which he called Logaritbms, and the Extraction of Roots by dividing the Log. by 2 for the Square : by 3 for the Cube : by 4 for the Biquadrate, $\varepsilon^{\circ} c$.

This Invention of his (no doubt) proceeded from a mature Confideration of the Coherence that is betwixt Numbers in Geometrical Proportion and thofe in Arithmetical Progreflion.

As in thefe following :
Viz. $\left\{\begin{array}{l}1,2 \cdot 4 \cdot 8 \cdot 16 \cdot 32 \cdot 64,128, \varepsilon^{\circ} \mathrm{c} . \text { Geometrical. } \\ 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6,7, \vartheta^{\circ} \mathrm{c} \text {. Arithmetical. }\end{array}\right.$
It is very perceptible, that, as the Numbers in the Geometrical Proportionals are produced by Multiplication or Divifion, thofe in the Arithmetical Progreffion are produced by Addition or Subtraction: As doth appear in this Example:
Viz. $\left\{\begin{array}{l}4 \times 32=128 \\ 2+5=7\end{array}\right\}$ or $\left\{\begin{array}{c}128 \div 32=4 \text { Geometr. } \\ 7-5=2 \text { Arithmet. }\end{array}\right.$
Again, $\left\{\begin{array}{l}1,10,100,1000.10000,100000, \vartheta_{c} c_{c} \text { Geometr. }\end{array}\right.$
5, Ec. Arithmet.
The fame Coherence is betwixt thefe latter, as was between the two firft Ranks.
Viz. $\left\{\begin{array}{c}1000 \times 10=10000 \\ 3+1=4\end{array}\right\}$ or $\left\{\begin{array}{c}100000 \div 1000=100 \text { Geometr. } \\ 5-3=2 \text { Arithmet. }\end{array}\right.$ Either of thefe Examples do fufficiently fhew the Reafon and very Ground of Logarithms.

And from the latter of thefe it was, that the prime Logarithms or Charas er flics were firft affigned.

## 462 Confruction of Logarithms.

As in this Table:

| Natural Num. | Logarithms. |
| ---: | ---: |
| $\mathbf{1}$ | $\frac{0,0000000}{10}$ |
| 1,0000000 |  |
| 100 | 2,0000000 |
| 1000 | 3,0000000 |
| 10000 | 4,0000000 |
| 10000 | 5,0000000 |

Having laid this Foundation, the next Work was to find out the Logarithms of the intermediate Numbers fituated betwixt 1 and 10 , viz. of $2,3,4,5,6,7, \mathcal{E}_{c}$. and of thofe betwixt 10 and 100, viz. of $11,12,13,14,15, E_{c}$. and fo on for the reft. This was a Work of fome Difficulty, and very laborious.

The firft Step in order thereunto (as I conceive) was to find out a Rank of continual Means betwixt 10 and 1 , fo as that the laft (and leaft thereof) might be a mixed Number lefs than 2, and fo near 1, as to have fuch a Number of Cyphers before the fignificant Figures thereof, as was intended the Places of Logarithms in the Table fhould confift of. Which Means are to be found, by extracting the fquare Root of 10 (having firft annexed a competent Number of Cyphers thereunto; ) then extracting the Root of that Root, and to by a continued Extraction of Root out of Root, until there be a Root fo qualify'd as before-mention'd: Which, to make a Table to feven Places in the Logarithm, will require twenty-five feveral Extractions, the laft of which will produce this Number, 1,00000006862238.

The next Step was to find out a Number betwixt (1) and (0) in Arithmetical Progreffion, that might truly correfpond with the Mean before found (betwixt 10 and I) fuch a Number muft confequently be its Logarithm. And this may be found by a continual bifecting (or halving) of 1 , fo often as was the Number of the foregoing Extractions (to wit, twenty-five) the laft of which Bifectibus will produce $0,000000029802322, \mathrm{~s}_{\mathrm{s}} \mathrm{c}$. the true Logarithm of 1,00000006862238.

For as I, 00000006862238 by twenty-five continued Involutions (viz. firft into itfelf, then that Product into itfelf, and fo on fuccefiively) will produce 10; fo will 0,00000002980232 , by the like Number of Doublings and Redoublings, produce i.

This Mean (or Number) and its Logarithm being thus found, it will follow by Proportion, As the fignificant Figures of this Mean : are to the fignificant Figures of its Logarithm: : fo are the figni-
ficant Figures of any Mean, betwixt any given Number and 1 : (having feven Cyphers before fuch Figures, as this hath) to the fignificant Figures of its Logarithm. To which muft be prefixed feven Cyphers to complete it. After which, being doubled, and redoubled according to the Number of Extractions required to produce its correfponding Mean, will at laft difcover the true Logarithm of the given Number. For the clearing of this, take an Example.

Suppofe it were required to find the Logarithm of the Number 2, to feven Places. Firft, by a continued Extraction of Root out of Root, beginning at 2, find fuch a Mean, or Root as before, betwixt 2 and $\mathbf{r}$, as will have feven Cyphers before its fignificant Figures; which, after twenty-three feveral Extractions, will be this Number 1,00000008262958. Then, according to the foregoing Proportions, it will be 6862238:2980232: : 8262958: 3588557. To which prefix feven Cyphers, as before directed, then will 1,00000008269958 have for its Logarithm, ,00000003588557; which being doubled and redoubled, as abovefaid, will produce 0,30102997958658 , the true Logarithm of 2; which being contracted to feven Places, according to the firft Defign, and agreeable to the feven Places of Cyphers, then it will become 0,3010299: But, in all the Tables that I have feen, the Logarithm of 2 is $0,3010300:$ I conceive the Reafon is, becaufe the remaining Figures 7958658 come fo near Unity of the laft Place in the retained Figures.

And, by the fome Method that this Logarithm of 2 is made, may the Logarithm of any other Number be found. But when once the Logarithms of a few of the prime Numbers, viz. of 3. 7. 11. 13. $छ_{c}$. (that is, of fuch Numbers as cannot be produced by the multiplying of two Integer Factors) are obtained, the reft may be eafily compored by Addition and Subtraction only. For as $3 \times 2=6$ fo Log. of $3+\log$. of $2=$ Log. of 6 . And as $10 \div 2=5$ fo Log. of $10-\log$. of $2=\log$ of 5 . The like of all Numbers that have aliquot Parts (that is, fuch Integer Numbers as may be divided by Integers.) And indeed the Logarithms of feveral of the prime Numbers may alfo be obtained by Addition or Subtraction, as might eafily be fhewed, and is not difficult to conceive by any one, who but duly confiders the Nature and Defign of Logarithms, $\delta^{\circ} c$. of which I fhall forbear faying any thing in this Place, and keep to my firf Defign herein, which was to give a brief Account of the ingenious Author's Method, as I conceive it, of making the fame: who undoudtedly found it a very difficult Work, by Reafon there are required fo many feveral Extractions of Roots out of Root', which muft needs render it both troublefome and laborious. Then to propofe a different Method of raifing the Loga-

## 464 Conftruction of logatityms.

rithms of fuch prime Numbers before-mentioned, which require the Extraction of Roots to obtain their refpective Means, with one tenth Part of the Trouble and Time required by the foregoing Method. And not only fo, but more exact ; for, by our prefent Method of converging Series, the Root of any Power, how high foever it be, is eafily found at one fingle Extraction : and thereby the Errors which would arife by extracting a Surd Root out of a Surd Root, efpecially when often repeated, are avoided; and confequently fuch a Mean, as may be required betwixt any Number and Unity, is thereby more exactly found.

Now, how this may be performed, I here intend to fhew, as briefly as I can. In order thereunto, take this as a Model.

Let $a$ = the Root, or Mean required betwixt anyNumber andUnity: Then $\left\{\begin{array}{l}a^{2}=\square a \cdot a^{4}=\square a^{2} \cdot a^{8}=\square a^{4} \\ a^{16}=\square a^{3} \cdot a^{32}=\square a^{16} \cdot a^{64}=\square a^{32} \\ a^{128}=\square a^{54} \cdot a^{256}=\square a^{228} \cdot a^{512}=\square a^{256}\end{array}\right.$

And fo on fucceflively with the Indices in Geometrical Progreffion, until the Power of $a$ be made equal to fuch a Term in that Progreffion, as that the Root, or Value of a may have, bet wixt Unity and its fignificant Figures, fo many Cyphers, as are the intended Number of Places in the Logarithms.

For inftance, let it be required to find the Mean between 10 and 1 , then the Power of $a$ mutt be $a{ }^{3355443^{2}}=\mathbf{1 0}$, this Index ${ }^{3355443^{2}}$ being the 25 th Term in Geometrical Pregreffion, which may be thus determined.

Let 1 , the Characteriftic or Logarithm of 10 , be divided by fuch a Term in Geometrical Progreffion, as will caufe fuch a Number of Cyphers to be before the fignificant Figures in the Quotient, as are required to be before the Figures of the Root $a$; fuppofe 7 , as before. Then $1, \div 33554432=, 00000002980232$, Vo $^{\circ} c$. which is the true Arithmetical Mean (as before found, by a continual bifecting of i) correfpondent to that fignify'd by $a$; and therefore the Value of $a$ found by extracting the refpective Root of $10=a^{33554432}$ will be the Mean required; viz. 1,000000068622.38 whofe Log. is ,00000002980232. Thefe, being found, are the Foundation of the reft, as before.

Then fuppofe it be required to find the Logarithm of any of the prime Numbers; if you pleafe, that of two. In order thereunto, let $a=$ the Root or Mean fought betwixt 2 and r , as before; then muft $a$ be continually involved, as by the above Model, until its Index be equal to the greateft Term in Geometrical Progreffion, whofe Number of Places of Figures are to be equal to the Number of required Cyphers before $a$, to wit 7. According to which, the

Power of $a$ will be $a^{838860}=2$ (this 8388608 being the 23 T Term in Geometrical Progreffion) confequently the refpective Root of $2=a^{8388608}$ will be the Mean requir'd. Example.
Let $r+e=a$
Then will $\quad r^{8388608}+8388608 r^{8388607} c$
$+35184367894528 r^{8388006} \mathrm{ee}=a^{3388006}=2$
Suppofer $=1$
Then $\mathrm{r}+8388608 e+35184367894528 e e=2$
That is $8388608 e+35184367894528 e e=1$
Each Part being divided by the Co-efficient found prefixed to ee, viz. $35{ }^{1843}, \mathcal{E}^{\circ} c$. then it will become

$$
, 00000023^{e}+e e=, 0000000000000284=D
$$

Confequently $\left\{\frac{D}{, 00000023+e}=e\right.$

$$
, 0000000000000284=D
$$

$+e=, 00000023$

248 (,00000008 = c $3^{6}$

Divifor ,0000003r
Firft $r=1$,

$$
+e=, 00000008
$$

New $r=1,00000008$
which being duly involved, in the fame Order as the Model denotes, and multiplied into the refpective Co-efficients, will then produce thefe Numbers,
Viz. 1, $9563638967+16411168 e+6883341605628$ gee $=2$
Then 16411168e +6883341606628 gee $=, 0436361033$
And, $0000002384 e+c e=, 00000000000000063393=D$
Confequently $\left\{\frac{D}{, 0000002384+e}=e\right.$
, $000000000000000063393=D$
, $00000023^{84} \quad 480 \quad(, 00000000263=e$
$+e=, 0000000026$
\(\left.$$
\begin{array}{l}\text { Divifor,000000240 } \\
\text { Divifor,0000002410 }\end{array}
$$ \begin{array}{r}15393 <br>

14400\end{array}\right]\)| 9330 |
| :--- |
| $\frac{7230}{000}$ |

## 466 Confruction of 见ogarithms.

```
Laft \(r=1,00000008\)
    \(+8=, 00000000263\)
New \(r=1,00000008263\)
```

I take only $1,0000000268=r$; the which being involved, and ordered as before, will produce thefe following Numbers, viz. $1,999503684867+16773028 e+70351267454084 e e=2$ Then $16773028 e+70351267454084 e e=, 000496315133$ , $0000002384186 e+e e=00000000000000000705481443=D$

Cinfequently $\left\{\frac{D}{, 0000002384186+e}=e\right.$
, $00000000000000000705481443=D$


This Value of $a=1,0000000826295879$ is the Geometrical Mean betwixt 2 and 1 , as was required; (agreeable to that before found, by twenty-three feveral Extractions.) And by this Method of proceeding, maty be found the Mean betwixt 10 and $\mathbf{I}$, viz. 1,00000006862238, or betwixt any other of the (before-mentioned) Prime Numbers and Unity, as might eafily be fhewed. But for Brevity Sake, I thall omit giving more Examples thereof, this one being fufficient (efpecially to the Ingenious) if well confidered, and but once underfood, to fhew the Nature of, and Manner how to proceed on the like Occafion, of finding any propofed

Mean. The next Thing will be to find the Logarithm of the Number from whence fuch Mean was produced, which may be thus performed :

Firft, find its correfponding Arithmetical Mean, or Logarithm, by Proportion (as in Page 462.) Then multiply that'correfponding Mean, fo found, into the Index Number of fuch Power as the Geometrical Mean was produced from; that Product will be the Logarithm of the given Number (without a continued Doubling and Redoubling, as before.) For the clearing of this, let it be required to complete the Logarithm of 2.

Having firft found $1,0000000686223^{8}$, the proper Geometrical Mean betwixt 10 and 1 ; alfo its correfponding Logarithm ,00000002980232 (as before directed) with them and the Mean betwixt 2 and 1, laft found, viz. 1,0000000826295879; make ufe of the above-mentioned Proportion (as in Page 463.) viz.

$$
6862238: 2980232:: 826295^{8} 79: 358855729
$$

To which prefix feven Cyphers to complete it (as before.) Then it will become , 0000000358855729 . This Number being multiplied into the Power of $a$ (what that is, fee Page 465.) will produce the Logarithm of 2 .
viz. $0000000358855729 \times 8388608=0,30103000391352$
But according to the firft Defign, it is required to have but feven Places, viz. 0301300 ; which is the true Logarithm of 2 without any Defect.

Thus I have prefented you with a new and expeditious Method of making Logarithms; which if they were required to fourteen or fifteen Places (I can modeflly fay) they might then be made with one twentieth Part of the Time and Trouble required by the fult Method.

## M E T H O D III.

A New Table of Logarithms. Compos'd by Mr. Long. Finding the Logarithm by Divifion only, and the Natural Nuinber belonging to a Logarithm, by Multiplication only.

| Log. | Nat. Num. | Log. | Nat. Num. |
| :---: | :---: | :---: | :---: |
| 0,9 | 7.943282347 | 0,00009 | 1.000207254 |
| 0,8 | 6.309573445 | 0,00008 | 1.000184224 |
| 0,7 | $5.0118723{ }^{\circ}$ | 0,00007 | 1.000161194 |
| 0,6 | 3.981071706 | 0,00006 | 1.000138165 |
| 0,5 | $3.16227-660$ | 0,00005 | 1.000115136 |
| 0,4 | $2.511886 ; 32$. | 0,00:04 | 1.000092106 |
| 0,3 | 1.995252315 | 0,00003 | 1.000069080 |
| 0,2 | 1.584893!93 | 0,00002 | 1.000046053 |
| 0,1 | 1.258925412 | 0,0000 I | 1.000023026 |
| 0,09 | 1.230268771 | 0,000009 | 1.000020724 |
| 0,08 | 1.202264435 | 0,000008 | 1.000018421 |
| c,07 | 1.174897555 | 0,000007 | 1.000016118 |
| 0,06 | 1.148153621 | 0,000006 | 1.000013816 |
| 0,05 | 1.122018454 | 0,000005 | 1.000011513 |
| 0,04 | 1.096478196 | 0,000004 | 1.000009210 |
| 0,03 | 1.071519305 | 0,000003 | 1.000006908 |
| 0,02 | 1.04712 .8548 | 0,000002 | 1.000004605 |
| 0,01 | $1.0232: 32992$ | 0,000001 | 1.000002302 |
| 0,009 | 1.020939484 | 0,0000009 | 1.000002072 |
| 0,008 | $1.01859138 \%$ | 0,0000008 | 1.000001842 |
| 0,007. | 1.016248594 | 0,000000? | 1.000001611 |
| 0,006 | 1.013011380 | c,0000006 | 1.000001381 |
| 0,005 | 1.011579454 | 0,0000005 | 1.000001151 |
| 0,004 | 1.009252886 | 0,0000004 | 1.000000921 |
| 0,003 | 1.005931669 | 0,0000003 | 1.000000690 |
| 0,002 | 1.004055794 | 0,0000002 | 1.000000460 |
| c,001 | 1.002305238 | 0,0000001 | 1.000000230 |
| 0,0059 |  |  | 1.000000207 |
| 0,0008 | 1.001843706 | 0,00000008 | 1.000000184 |
| 0,0007 | 1.001613100 | 0,00000007 | 1.000000161 |
| 0,0006 | $1.00133^{5} 50.5$ | 0,00000006 | 1.000000138 |
| 0,0005 | 1.001151956 | 0,00000005 | 1.000000115 |
| 0,0004 | 1.000021459 | 0,00000004 | $1.00000009^{2}$ |
| 0,0003 | 1.000691015 | 0,00000003 | 1.000000069 |
| 0,0002 | 1.000460623 \} | 0,00000002 | 1.000000046 |
| 0,0001 | 8.000230285 | 0,00000001 | 1.000000023 |

This Table I fometimes make ufe of for finding the Logarithm of any Number propos'd, and vice verfa. Suppofe I had Occafion to find the Logarithm of 2000. I look in the firft Clafs of my Table (the whole Table confifts of 8 Claffes) for the next lefs to 2, which is 1.995262315 , and againft it is 3 , which confequently is the firft Figure of the Logarithm fought. Again, dividing the Number propos'd 2, by 1.995262315 the Number found in the Table, the Quotient is 1.002374467 ; which being look'd for in the fecond Clafs of the Table, and finding neither its Equal, nor a Leffer, I add o to the Part of the Logarithm before found, and look for the faid Quotient, 1.002374467 in the third $\mathrm{Clafs}_{2}$ where the next lefs is $1.002305^{2} 38$, and againft it is 1 , to be added to the Part of the Logarithm already found; and dividing the Quotient 1.002374467 , by 1.002305238 , laft found in the Table, the Quotient is 1.000069070 ; which being fought in the fourth Clafs gives O , but being fought in the fifth Clafs gives 2, to be added to the Part of the Logarithm already found; and dividing the laft Quotient by the Number laft found in the Table, viz. 1.0000 .6053 , the Quotient is 1.000023015 , which, being fought in the fixth Clafs, gives 9 to the Part of the Logarithm already found: And dividing the laft Quotient by the new Divifor, viz. 1.000002072 , the Quotient is 1.000000219 , which being greater than 1.000000115 fhews that the Logarithm already found, viz. $3 \cdot 3010299$ is lefs than the Truth by more than half an Unit; wherefore adding 1, you have Briggs's Logarithm of 2000, viz. 3.3010300.

If any Logarithm be given, fuppofe 3,3010300 , throw away the Characteriftic, then overagainft thefe Figures 3 . . O . . I . . O .. 0 , you have in their refpective Ciaffes $\mathbf{1}, 995262315 \ldots \ldots$. 1,002305238 .....0..... 1,000069080 . .... 0... O which mulicily'd continually into one another, the Product is 2. 2000019966 , which, by reafon the Characteriftic is 3 , becomes $2,000,000019966, \delta^{\circ} c$. that is, 2000, the Natural Number defired. Ifolit not mention the Method by which this Table is fram'd, becaufe you will eafily fee that from the Ufe of it.
It is obvious to the intelligent Reader, that thefe Claffes of Tumbers are no other than fo many Scales of mean Proportionals: in the firit Clafs, between 1 and 10 ; fo that the laft Number thereof, viz. 1,258925412 is the tenth Root of 10 , and the reft in crier afcending are the Powers thereof. So in the fecond Clafs, the lat Number 1,023292092 is the hundreth Root of 10, and the reft in the fame Manner are Powers thereof. So 1.002 .305238 , in the third Class, is the tenth Root of the laft of the fecond, and
the relt its Powers, E゚c. Or, which is all one, each Number, in the preceding Clafs, is the tenth Power of the correfponding Number in the next following Clafs: Whence 'tis plain, that to confiruct thefe Tables requires no more than one Extraction of the fifth or furfolid Root for each Clafs, the reft of the Work being done by the common Rules of Arithmetick.

## METHOD IV.

Their Conftruction, according to the common Rules, given by many Extractions of Roots, is tedious; the beft Way yet known is this which follows.

To make a Table of Logarithms.
Firft, Put for the Logarithm of 1 a Cypher for the Index, and a competent Number of Cyphers for the Logarithm; according to the Number of Places you would have your Logarithms confift of; for 10 and Unit, with the fame Number of Cyphers; for 100, 2, with as many Cyphers; for 1000, 3 , with as many Cyphers, $\mathcal{E}^{\circ} c_{\text {. }}$

Secondly, Find the Difference between fome two Logarithms above 1000, or rather above 10000, that differ by Unity; thus multiply the two Numbers together, and that Product you muft multiply again by $43429448190325^{18} 3896^{*}$ which laft Product divided by the Arithmetical Mean between both Numbers, the Quotient is the Difference fought.

Suppofe we would find the Difference between the Log. 10000, and 10001, the Product of thefe two Numbers is $\mathbf{1} .00010000$. which multiplied by 4343 produced 43434343 ; this divided by 10000.5 , quotes 4343. Now if to the Logarithm of 10000 , which is 4.0000000 , you add the Difference before found, to wit, 434, the Sum 4.0000434 is the true Logarithm of 10001 to 7 Places.

Thirdly, Having thus found the Difference of any two Logarithms differing by Unity, and confequently fome of the Logarithms by dividing the Difference found by the Arithmetical Mean, between any two Numbers differing by Unity, you fhall have the Difference of the Logarithm of thofe two Numbers.

Thus to find the Difference betwixt the Logarithm of 274, and 275.; divide 4343, the Difference of the Logarithm of roo00, and 10001 by 2745 the Quotient 15821 , is the Difference fought.

Fourthly, Having by this Means found a few of the prime Logarithms, the reft are made by Addition and Subtration, and hav-

[^7]ing made the Canon upwards, above 1000 to 10000 , by Confequence it is made for all inferior Numbers.

The prime Numbers to which Logarithms muff be found, in the first Place are thee, 2.3.7.11.13.17.19.23.29.31 $37 \cdot 41 \cdot 43 \cdot 47 \cdot 53 \cdot 59 \cdot 61 \cdot 67 \cdot 71 \cdot 73 \cdot 79 \cdot 89 \cdot 97$, Etc. or the fame Numbers with Cyphers.

But fince it was very tedious and laborious, to find the Logarithms of the prime Numbers, and not eafy to compute Logarithms by Interpolation, by firft, fecond, and third, Sic. Differences, therefore the great Men, Sir ISaac Newton, Mercator, Gregory, Wallis, and laftly, Dr. Halley, have publifhed infinite converging Series, by which the Logarithms of Numbers to any Number of Places may be had more expeditioufly and truer : Concerning which Series, Dr. Halley has written a learned Tract, in the Philofophical Tranfactions, wherein he has demonftrated thole Series after a new Way, and thews how to compute the Logarithms by them. But I think it may be more proper here to add a new Series, by Means of which may be found, eafily and expeditioufly, the Logarithms of large Numbers.

Let $z$ be an odd Number, whore Logarithm is fought; then Shall the Number $z-1$ and $z+1$ be even, and accordingly their Logarithms, and the Difference of the Logarithms will be had, which let be called $y$ : Therefore, alfo the Logarithm of a Number which is a Geometrical Mean between $z-1$ and $z+1$ will be given, viz. equal to the half Sum of the Logarithms. Now the Series $y \times \frac{1}{4 z}+\frac{1}{24 z^{3}}+\frac{7}{36 c z^{5}}+\frac{181}{15120 z^{7}}+\frac{13}{25200 z^{9}}$ gcc. Shall be equal to the Logarithm of the Ratio, which the Geometrical Mean between the Numbers $z-1$ and $z+1$, has to the Arithmetical Mean, viz. to the Number $z$.

If the Number exceeds 1000, the firf Term of the Series $\frac{y}{4 z}$ is fufficient for producing the Logarithm to 13 or 14 Places of Fi gures, and the fecond Term will give the Logarithm to 20 Places of Figures. But if $z$ be greater than 10000 , the fist Term will exhibit the Logarithm to 18 Places of Figures; and fo this Series is of great Ufe in filling up the Logarithms of the Chiliads omitted by Briggs. For Example ; It is required to find the Logarithm of 20001. The Logarithm of 20000 is the fame as the Logarithm of 2, with the Index 4 prefix'd to it; and the Difference of the Logarithms of 20000 and 20002, is the fame as the Difference of the Logarithms of the Numbers 10000 and 1000 1, viz. 0.0002434272 7687. And if this Difference be divided by 4 7 , or 80004 , the

Quotient $\frac{y}{4 z}$ fhall be
0.000000000542814

And if the Logarithm or the Geometri- 4. 301051709302416 cal Mean be added to the Quotient, the Sum will be the Logarithm of 20001. 4. 301051709845230 Wherefore it is manifeft, that to have the Logarithm to 14 Places of Figures, there is no Neceffity of continuing out the Quotient beyond 6 Places of Figures. But if you have a Mind to have the Logarithm to 10 Places of Figures only, as they are in Vlacq's Tables, the two firt Figures of the Quotient are enough. And if the Logarithms of the Numbers above 20000 are to be found by this Way, the Labour of doing them will moftly confift in fetting down the Numbers. Note, This Series is eafily deduced from that found out by Dr. Halley; and thofe who have a Mind to be inform'd more in this Matter, let them confult his abovenam'd Treatife.

Mr. WARD's Eafy Method of making the Canon of ※incs, Tangents, \&c.

FIR S T, let me premife two Things, that the Periphery of a Circle, whofe Radius is Unity or 1 , is $6.283185, \& c$. and that the natural Sine of one Minute doth fo infenfibly differ from the Length of the Arch of one Minute, that it may be taken for the fame.

Confequently, $\left\{\begin{array}{l}\text { As the Periphery in Minutes }: \text { is to the Peri- } \\ \text { phery in equal Parts of the Radius }:: \text { So is } \\ \text { one Minute }\end{array}\right.$ one. Minute : to the Parts agreeing to that Minute.

That is, $21600^{\prime}: 6,283185:: \mathbf{1}^{\prime}: 0,000290888=$ the $\mathrm{Na}-$ tural Sine of one Minute ; which agrees with the largeft Table of Sines I ever faw.

Having thus got the Sine of one Minute, its Co-fine may be thus found:

Suppofe $R A=R S$ the Radius of any Circle, $S N=$ the Sine of the Arch S A. Then $R N=C S$ is the CoSine of that Arch. But $\square R S-\square$ $S N=\square R N$; confequently $\sqrt{\square R S-\square S N}=R N$.
That is, From the Square of the Radius, fubtract the Square of the Sine of $I^{\prime}$, the fquare Root of the Remainder will be the Co-Sine of 1', per Chap. 9. Prop. 1. In Numbers, the Sine of $1^{\prime}$ is 000290885, its Square is 0,000000084612 ; and I
 - $0,000000084612=0,999999915388$, the Square Root thereof is ; $99999995=$ the Co-Sine required.

The Sine and Co-Sine of one Minute being thus obtain'd, all the reft of the Sines in the Quadrant may be gradually calculated by Mr. Michael Dary's Sinical Proportions; which I thall here infert, to the fame Effect as they are in his Mifcellanies; and then explain and demonitrate the Truth of thofe Proportions.

If a Rank of Arches be equi-different;
Then $\left\{\begin{array}{l}\text { As the Sine of any Arch in that Rank: is to the Sum of the } \\ \text { Sines of any two Arches equally remote from it on each Side: : } \\ \text { So is the Sine of any other Arch in the faid Rank: to the Sum } \\ \text { of the Sines of two Arches next it on each Side; baving the } \\ \text { fame common Diftance. }\end{array}\right.$
Immediately after thefe Proportions, he lays down the following Æquations:

Three Arches equi-different being propofed; if (faith he) you put $Z=$ the Sine of the great Extreme, $y=$ the Sine of the leffer Extreme; $M=$ the Sine of the Mean; $m=$ the Co-Sine thereof; $D$ the Sine of the common Difference; $d=$ the Co-Sine thereof; and $R=$ the Radius.
I. Then $Z+y=\frac{2 M d}{R}$. Then $Z-y=\frac{2 m D .}{R}$
3. Then $Z y=M M-D D$. 4. Then $\frac{Z}{y}=\frac{M d+m D}{M d-M d}$.

From the foregoing it is evident (faith he) that if two Thirds, viz. either the former or latter 60 Degrees, or the former 30 Degrees, and the latter 30 Degrees of the Quadrant be completed with Sines; the remaining Part of the Quadrant may be completed by Addition, or Subtraction only.

Thus

Thus far is from the ingenious Mr . Dary, concerning thefe excellent Proportions; the Truth whereof I thall thus demonftrate.

In the annexed Circle $D A=d a$ are Diameters, $f b=b a=a b=$ $b c$, are equal Arches.

Draw $f \tau$ parallel to $D A$; then will $N e=$ $L f$. And the $\triangle d a c$, like the $\Delta G f e$, being both right-angled at $c$ and $\ell$, and $\angle d=\angle G$ becaufe fubtended by the equal Arches $a c=$
 $f a$.

$$
\text { Therefore } d a: d c:: G f: G e \text {. }
$$

Confequently $\frac{1}{2} d a: d c:: \frac{1}{2} G f: G e$. But $H b=G f$, whence $H M$ $=\frac{3}{2} G f$, and $\frac{1}{2} d a=$ the Radius, $d p=\frac{1}{2} d c$. Therefore it will be, Radius: $2 d p=:: H M=\frac{1}{2} G f: G N+N e=G N+L f$. That is, as the Radius : is to twice the Sine $d p::$ fo is the Sine $H M$ : to the Sum of the two Sines $G N$ and $F L=f L$. Q. E. D.

I fhall now explain thefe Proportions, and fhew how they may be applied in Practice: Having the Sine of one Minute, and its Co-Sine as before; let the Radius be made the mean or middle Term between thofe two Extremes; then the Proportions will run $\left\{\begin{array}{l}\text { As the Radius : is to the double Co-fine of one Minute }:: \text { fo is } \\ \text { the Sine of one Minute : to the Sine of two Minutes, and of }\end{array}\right.$ Thus $00^{\prime}:$ and $\int 0$ is the Sine of $2^{\prime}::$ to the Sum of the Sines of $3^{\prime \prime}$ and $1^{\prime}::$ and fo is the Sine of $3^{\prime}:$ to the Sum of the Sine of $4^{\prime}$ and $2^{\prime}$.
And fo on in a fucceffive Order, from Minute to Minute.
And then, if from the Sum of the Sines of $3^{\prime}$ and $1^{\prime}$ be taken the Sine of $1^{\prime}$, the Remainder will be the Sine of $3^{\prime}$ : And the like, $i^{r}$, from the Sum of the Sines of $4^{\prime}$ and $2^{\prime}$, be taken the Sine of $2^{\prime}$ there will remain the Sine of $4^{\prime}, \varepsilon^{\circ} c$.

Proceeding on by this Method, all the Natural Sines in the Quadrant may be eafily calculated by Addition, and Subtraction only. For the Radius, or Firft Term in the Proportion, being 1,0000000
or Unity, Divifion is wholly avoided: And becaufe the fecond Term in the Proportion varies not, if a Tariffa, or fmall Table be made thereof, to all the nine Digits, then Multiplication is alfo avoided. For, by the Help of that Tariffa, the whole Work may be perform'd by Addition and Subtraction, until all the Sines are gradually made.

Thus you have an eafy Way of making the Canon of Sines; which being once done, the Tangents and Secants may be found by the following
Proportions $\left\{\begin{array}{l}\text { As the Co- Fine of any Arch: is to the Sine of that Arch:: }\end{array}\right.$ $\left\{\rho_{0}\right.$ is the Radius : to the Tangent of the fame Arch. That is, by the firft Scheme of this Problem,
$R N: S N:: R A: T A$. And $R N: R S:: R A: R T=$ the $\mathrm{Se}-$ cant of that Arch.

## 19lane $\mathfrak{C r i g o n o m e t r y . ~}$

## Definitions.

1. $A$Circle is fuppos'd to be divided into 360 equal Parts, called Degrees ; and each Degree into 60 equal Parts, called Minutes; and each Minute into 60 equal Parts, called Seconds, E゚c. Any Portion of whofe Circumference is called an Arch, and is meafured by the Number of Degrees it contains.
2. A Chord or Subtenfe is a Atraight Line, connecting the Extremities of an Arch; as BE is the
 Chord of the Arches BAE BDE.
3. A Sine (or Right-fine) is a ftraight Line drawn from one End of an Arch perpendicular to that Diameter paffing thro' the orher End; or it is half the Chord of twice the Arch; fo BF is the Sine of the Arches BA, BD, And here it is evident, that the Sine of 90 Degrees (which is equal to the Radius or Semi-Diameter of the Circle) is the greateft of all Sines, the Sine of an Arch greater than a Quadrant being lefs than the Radius.
4. The Difference of an Arch from a Quadrant, whether it be greater or lefs, is call'd its Complement; fo HB is the Complement of the Arches BA, BD; BI is the Sine of that Complement,
and therefore it is called the Co-fine, or Sine-Complement of the Arches BA, BD.
5. The Secant of an Arch is a ftraight Line drawn from the Center thro' one ${ }^{2}$ nd of the Arch till it meet with the Tangent, which is a ftraigh: Line touching the Circle at the Extremity of that Diameter which cuts the other End of the Arch; fo CG is the Secant, and AG the Tangent of the Arches BA, BD : And CK is the Cofecant, and HK the Co-tangent of the faid Arches.
6. A Veríed Sine is the Segment of the Diameter intercepted between the Arch and its Sine: Thus FA is the Verfed Sine of the Arch BA, and FD of the Arch BD.
7. Whatever Number of Degrees an Arch wants of a SemiCircle is called its Supplement.
8. That Part of the Radius which is betwixt the Center and Sine is equal to the Co-fine; thus CF is $=\mathrm{IB}$.
9. If an Arch be greater or lefs than a Quadrant the Sum or Difference of the Radius or Co-fine is equal to the Verfed Sine.

In a Triangle are fix Parts, viz. three Sides and three Angles: Any three of which being given, except the three Angles of a Plain Triangle, the other three may be found either Mechanically, by the Help of a Scale of equal Parts and Line of Chords, or by an Arithmetical Calculation, if, fuppofing the Radius divided into any Number of equal Parts, we know how many of thofe equal Parts are in the Sine, Tangent, or Secant of any Arch propos'd: The Art of inferring which is called Irigonometry, and it is either Plane or Spherical.

Pinne Trigonometry is folv'd by the Help of four fundamental Propofitions call'd Axioms.
Axiom I.

In a Right angled Triangle ABC, if one Leg of the Right-angle, as $A B$ or CB , be made the Radius of a Circle, then thall the other Leg CB or $A B$ be the Tangent of the Angle oppofite to it, and the Hypothenufe AC (or Side opoofite to the Right-angle) its Secant (by Definition 5.)

But if the Hypothenufe AC be made the Radius of a Circle, then
 will the Legs (or Sides including the Right-angle) to wit, CB and AB be the sines of the Angles oppolite (by Definition 3.)

Upon this Axiom depends the Solution of the feven Cafes of Right-angled Plane Triangles.

Note, That the three Angles of a Plane Triangle make two Right-Angles, or 180 Degrees, by 32. I Eucl.

For the more eafy making the Proportions for the Solution of Right-angled Triangles, obferve, that as different Sides are made Radius, fo the other Sides require different Names, which Names are either Sines, Tangents, or Secants, and are to be taken out of your Table.

To find a Side, any Side may be made Radius : Then fay, as the Name of the Side given is to the Name of the Side required; fo is the Side given to the Side required.

But to find an Angle, one of the given Sides muft be made Radius; then, as the Side made Radius, is to the other Side; fo is the Name of the firt Side (which is Radius) to the Name of the fecond Side ; which fourth Proportional mult be found among the Sines or Tangents, $E_{c}$ c. to be determined by the Side made Radius, and againft it is the Angle required.

The Proportions for the Solution of feven Cafes of Plane Rightangled Triangles.
[See the next foregoing Fig.]

| Given. | Reqd. | Proportions. | Rad | S. |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{AB} \\ \mathrm{~A} \text { and } \\ \mathrm{C} \end{gathered}$ | B C | $\begin{aligned} & \text { Cofi. A:Si. A : : AB:BC. } \\ & \mathrm{R}: \mathrm{Tan.A}:: \mathrm{AB}: \mathrm{BC} . \\ & \text { Co-t. A: R }:: \mathrm{AB}: \mathrm{BC} . \end{aligned}$ | $\left\|\begin{array}{l} \overline{A C} \\ A B \\ B C \end{array}\right\|$ | I |
| $\begin{gathered} \mathrm{AB} \\ \mathrm{~A} \text { and } \end{gathered}$ | A C | Cofi. $\mathrm{A}: \mathrm{R}:: \mathrm{AB}: \mathrm{AC}$. <br> $R:$ Sec. $A:: A B: A C$. <br> Tan. A: Core, A: : AB:AC. | $\left\|\begin{array}{l} \mathrm{AC} \\ \mathrm{~A} \\ \mathrm{~B} \end{array}\right\|$ | 2 |
| A B B C | $\begin{aligned} & \text { A } \\ & \text { and } \\ & \text { C } \end{aligned}$ | $A B: B C: R: T a n . A$. Complement is C . <br> $B C: A B:=R: T a n . C$. Complement is A . | AB $B C$ | 3 |
| $\begin{aligned} & \mathrm{AB} \\ & \mathrm{BC} \end{aligned}$ | A C | AB:BC:: R:Tan. A; then <br> Cofi. $A: R:: A B: A C$, or <br> $\sqrt{\square \square A B+\square B C}:=A C(\operatorname{per} 47,1$. Eucl. | $\|\overline{\mathrm{AB}}\|$ | 4 |
| $\begin{aligned} & \text { A B } \\ & \text { A C } \end{aligned}$ | $\begin{aligned} & \bar{A} \text { and } \\ & \text { C } \end{aligned}$ | $\mathrm{AC}: \mathrm{BC}:: \mathrm{R}:$ Cofi. A . <br> $A B: A C: R: S e c a n t A$. | $\overline{\mathrm{AC}}$ | 5 |
| $\begin{aligned} & \text { A B } \\ & \text { A C } \end{aligned}$ | BC | $\mathrm{AC}: \mathrm{AB}:: \mathrm{R}:$ Cofi. A; then $\mathrm{R}:$ Tan. $\mathrm{A}:: \mathrm{AB}: \mathrm{BC}$, or $\sqrt{\square \square A C-\square A B}:=B C$. | $\overline{\mathrm{AC}}$ | 6 |
|  | A B | R:Cofi. A::AC:AB, Sec. A: R $:: A C: A B$. <br> Cof. A : Cot, A : : AC:AB. | $\begin{aligned} & \overline{\mathrm{AC}} \\ & \mathrm{AB} \\ & \mathrm{BC} \end{aligned}$ | 7 |

## Axiom II.

In any Triangle the Sides are proportional to the Sines of the oppofite Angles.

## Dimonftation.



Produce the leffer Side of the Triangle ABC, to wit AB to F, making $\mathrm{AF}=\mathrm{BC}:$ Let fall the Perpendiculars $\mathrm{BD}, \mathrm{FE}$, upon the Side CA produc'd if Need be; then will FE be the Sine of the Angle $A$, and $B D$ the Sine of the Angle $C$, to the Radius $B C=A F$.

Now the Triangles ABD and AFE, having the $\angle A$ common to them both, and the $\angle \mathrm{D}=\angle \mathrm{E}=$ to a Right-Angle, are fimilar; wherefore (by 4. 6 Eucl. Elem.) $\mathrm{AF}(\mathrm{BC}): \mathrm{AB}:: \mathrm{FE}: \mathrm{BD}$; viz. : : Si. A : Si. C. 2. E. D. Otherwife thus; by $A x$. I. AB : $\mathrm{R}:: \mathrm{BD}: \mathrm{Si} . \mathrm{A}$, and $\mathrm{BC}: \mathrm{R}:: \mathrm{BD}:$ Si. C ; therefore $\mathrm{AB} \times \mathrm{Si}$. $\mathrm{A}(=\mathrm{R} \times \mathrm{BD})=\mathrm{BC} \times \mathrm{Si}, \mathrm{C}$; wherefore $\mathrm{AB}: \mathrm{BC}:: \mathrm{Si} . \mathrm{C}: \mathrm{Si}$. A. 2.E.D.

## Axiom III.

The Sum of the Legs of any Angle of a Plane Triangle is to their Difference, as the Tangent of half the Sum of the Angles oppofite to thofe Legs is to the Tangent of half their Difference.

## Demonifration.

In the Triangle ABC produce CB , the leffer Leg of the Angle B, till $B D$ becmes $=B A$, the greater L.eg, and then bifect $C D$ in $E$; join $A$ $D$ and bifect it alfo in F; draw BF, which (by 8. 1 Eucl. El:) will be perpen. to $A D$; and
 draw EF, which (bv 26 Eucl. Elem.) will be parallel to AC. Then will the Angle $\mathrm{ABF}=\mathrm{FBD}=\frac{1}{2} \mathrm{ABD}$, which external Angle ABD is (by 32. 1 Eucl. Elem) $=\mathrm{BAC}+\mathrm{C}$, that is to the Sum of the oppalite Angles required.

Draw then $\operatorname{PG}$ paralicl in AC , fo will the Angle GBA be (by 29. I Eisi. Eirm. ) equal to its Alternate one BAC; and if from half the

Sum of the oppofite Angles you take the leffer Angle, i. e. If from $\angle A B F$ you take the $\angle G B A$, there will remain $\angle G B F=$ half the Difference of the oppofite Angles: And fo alfo, if from CE half the Sum of the Legs, you take CB the leffer Leg, there will remain BE equal to half the Difference of the Legs. And then fince the $\triangle \mathrm{ABF}$ is Right-angled, if BF be made Radius, AF will be the Tangent of $\angle \mathrm{ABF}$ (i.e. the Tangent of half the Sum of the oppofite Angles); and in the little $\triangle$ GBF, FG will be the Tangent of the $\angle \mathrm{GBF}$ (i.e. the Tangent of half the Difference of the oppofite Angles): But the Segments of the Legs of any Triangle cut by Lines parallel to the Bafe, being (by Schol. to 2. 6 Eucl. El.) proporrional ; EC: EB: :FA: FG; that is in Words, half the Sum of the Legs is to half their Difference, as the Tangent of half the Sum of the oppofite Angles is to the Tangent of half their Difference: But Wholes are as their Halves; wherefore the Sum of the Legs is to their Difference, as the Tangent of half the Sum of the Angles oppofite is to the Tangent of half their Difference. 2. E. D.

## Asiom IV.

The Bafe or greatelt Side of any Plane Triangle is to the Sum of the Legs, as the Difference of the Legs is to the Difference of the Segments of the Bafe made by a Perpendicular let fall from the Angle oppofite to the Bafe.

## Demonftrations.

From the $\angle B$, on the Bafe AC, of the $\triangle \mathrm{ABC}$, let fall the Perpendicular BD ; on B , as a Center, with the greater Leg BC, as a Radius, defcribe the Circle $\mathrm{B} x \mathrm{C} y$ Z; and produce AB to $x$ and $y_{s}$ and CA to $\mathbf{Z}$. Then by the 35. 3 Eucl. Elem. $\mathbf{A} y \times \mathrm{A} x$ is $=\mathrm{AC}$ $\times \mathrm{AZ}$; viz. : $\mathrm{BC}-\mathrm{BA}: \times: \mathrm{BC}+\mathrm{BA}:=\mathrm{AC} \times: \mathrm{DC}-\mathrm{DA}$ therefore $\mathrm{AC}: \mathrm{BC}+\mathrm{BA}:: \mathrm{BC}-\mathrm{BA}: \mathrm{DC}-\mathrm{DA}$. 2, E. D. Otherwife, let the Difference of the Squares of the Sides BC and AB be taken and divided by the Bafe AC, the Quotient Chall be the Difference of the Segments of the Bafe aforefaid: Or, fquare all the 3 Sides, and deduct the Square of one of the lefs Sides out of the Sum of the other two Squares, divide half the Remainder by the longeft Side, the Quotient is the Alternate Segment of the Hafes

The Proportions for the Solution of the fix $\mathrm{C}_{\text {afes }}$ of Plane obliबque Triangles.
[Sce the laft Fig.]

| Given. | Req. | Proportions. | Ax. | Cafe. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AB <br> B | A | $\mathrm{AB}: \mathrm{BC}::$ Si. C:Si. A. | 2 | I |

N. B. Iff, If the given Angle be Obtufe, the other two Angles then are each Acute. $2 d l y$, If the Side oppofite to the given Angle is longer than the Side oppofite to the Angle fought, then is the Angle fought Acute; but if fhorter, then is the faid Angle doubtful, and may be either Acute or Obtufe, becaufe both the Sine and its Complement to two Right-Angles are the fame: Wherefore to be certain of what Quality the Angle oppofite to the greateft Side is: Take the Sum and Difference of the greateft Side and Middle (or leaft) and their Logarithms, if the Half of them be equal to the Logarithm of the third Side, the Angle oppofite to the greatert Side is a Right-Angle; but if the Logarithm of the third Side be greater than the Half, it is Acute, if lefs, it is Obture: Or, without Logarithms, multiply the faid Sum by the Difference abovefaid; and extract the Square Roor, which if $\left\{\begin{array}{l}\text { Equal to } \\ \text { Greater than } \\ \text { Lefs tinan }\end{array}\right\}$ the third Side, then is the greateft Angle $\left\{\begin{array}{l}\text { Right } \\ \text { Obture } \\ \text { Acute }\end{array}\right\}$

| $\begin{array}{rr} A & B \\ B & C \\ \text { and } & C \end{array}$ | A C | AB:BC : : Si. C : Si. A. <br> Hence, by Subtraction, the $\angle \mathrm{B}$ will be known. <br> Si. A : Si. B : : B C : A C. | 2 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll} \hline A, & C \\ \text { and } & B \\ C \end{array}$ | A B | Si. A : Si. C : : BC : A B | 2 |  |
| $\begin{gathered} \mathrm{B} \\ \mathrm{AB} \\ \mathrm{BC} \end{gathered}$ | $\begin{aligned} & \text { A and } \\ & \text { C } \end{aligned}$ | $\overline{B C+A B: B C-A B:: T a n \cdot \frac{1}{2} \text { Sum of }}$ the $\angle \mathrm{s}$ oppofite : Tan. $\frac{1}{2}$ Difference of the $\angle$ s oppofite. Then $\frac{1}{2}$ Sum $+\frac{1}{2}$ Difference $=$ greater $\angle A$; and $\frac{1}{2}$ Sum $-\quad$ Difference $=$ leffer $\angle C$. | 3 | 4 |
| $\begin{gathered} \mathrm{B} \\ \mathrm{AB} \\ \mathrm{BC} \end{gathered}$ | A C | Firft, find the Angles by the laft; then Si، C : Si. B : : A B : AC. | 3 | 5 |
| $\begin{aligned} & A B \\ & B C \\ & A C \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$ | AC: BC+BA::BC-BA:DC-DA: Then $\frac{1}{2} \mathrm{AC}+\frac{1}{2} \mathrm{DC}-\frac{1}{2} D A=\mathrm{DC}$ And Then $\mathrm{AB}: \mathrm{AD}:=\mathrm{DC}-\frac{\pi}{2} \mathrm{DA}:=\mathrm{DA}$. And $\mathrm{CB}: \mathrm{DC}:: \mathrm{R}: \mathrm{Cofi}$. And $180^{\circ}-\angle \mathrm{A}-\angle \mathrm{C}=\angle \mathrm{B}$. | 4 <br> 1 <br> 1 <br>  <br>  | 6 |

Or more readily at one Operation.
From half the Sum of the Sides fubduct each particular Side, and let the Sumit of the Logarithm of the half Sum and Difference of the Side fubtending the enquired Angle be fubducted from the Sum of the L"g. of the other Difference and the dnitile Radius, half the Remainder fhall be the Log. of the Tangent of half the enquired Angle.

Agreeable to this Axiom in Geilibrand's Trig. Britannica, p. 46.
As the Rectangle of balf the Sum of the Sides and the Difference between tba: balf Sums and the fide onpogite to the Angle required, is to the Feezangle of the other tevo Remai: Ciers; jo is the Sguari of Radius to tbe Square if the Targ nt of ba'f the Argie fought.
Ex Arwilis latera, vel ex laveritus Angulos \&f mixtion in Triangults tam fiaris quam
Spharicis allezui, Surma Gloria Mathematici ef: Sis enim Coelum E Tkrras © Aia-
ria folici © atimi ando calculo menfurat.
Fian. Vieria.

## T H E

## I N D E X.

A.

A

| A. Page. Angle, in a Segment $\begin{array}{r}\text { Page. } \\ \text { 287 }\end{array}$ |
| ---: | ---: | - 293 Abfolute Number 144 - at the Center - 306 Acute Triangle 288 Addition of whole Numbers ${ }^{319}$ - of Weights and Meafures

$$
\text { Apothecaries Weights - } 3^{2}
$$ 39 - of Vulgar Fractions 53

$$
\text { Arch, how bifected }=293
$$

$$
\overline{\text { trifected - }} \text { - } \begin{aligned}
& 449 \\
& \hline
\end{aligned}
$$ —— of Decimal Fractions $59^{\prime}$ - of Algebraick Integers' 147

- of Algebraick Fractions 167 167 Averdupois Weight
at the Periphery ibid. Annuities. See Penfions.

$$
\text { Antecedent }-1-78
$$

$$
\text { Area }-\ldots-{ }_{285}^{549}
$$

$$
\text { Arithmetick }-\ldots-2
$$

$$
\text { Afymptotes of a Hyperbola } 366
$$

Adfected Equations, their Solution - - $\quad 234$ Adjacent Side - - ${ }_{326}$ Affirmative. See Quantity. Ale Meafure - - 35


- Alternate - 112
- Partial - - 114

Total - $115,2.27$

| Alternate Segment - $\quad 323$ |
| :--- |

Altitude of a Figure - $\quad 289$
Amblygonium - - 288
A nalogies or Proportions 193.
Angle,Right,Obtufe, Acute 284

## $1 \mathrm{~N} D \mathrm{E}$.

Page. Page.
Biquadrate its Root extracted Cube Geometrical ..... 402134, 235
Body. See Solid.Butt Gauged C. - 449
Calipers nliding - - 449
Carracts of Gold and Silver 118
Cafk gauged ..... 449
Cathetus ..... 288
Center of a Circle - 286 Decagon, how formed ..... 299

- of an Ellipfis - 364
- its Content found ..... 414
Cubick. See Equation.
Cylinder
- its Content found ..... 402 ..... 402 ..... 415
- its curve Superficies
- its Content gauged ..... 444
Cypher ..... D.
__ infcribed in a Circle ..... 345
-- common particular ibid. - its Area found ..... 346
Change of Order in Things 82 Decimal. See Fractions.
Chord of a Circle - 287
Decimal Tables ..... 70
Circle - - - 286 Demonfration ..... 291
- its Properties ..... 315
Denominator ..... 48
- how divided - 356 Diagonal of a Trapezium ..... 290
- its Area found - ..... 406
--ne the fame gauged ..... 438
Circumference of a Circle ..... 286
Points
_its Property in a Circle ..... 316
Diameter of a Circle ..... 286
_- of an Ellipfis ..... 363
Digit ..... 3
Dimenfions ..... 2, 123
- how found - 347 Direct Rule of Three ..... 85
Coefficient ..... 144
Coin - - - $3^{1}$
Common Meafure 52, 166
Compaffes Elliptical - 375
Cooler, how gauged - 431
Cone and its Sections ..... 361
- its Content found ..... 417- its Curve Superficies ibid.
_ its Content gauged ..... 444
Conjugal Hyperbolas - 394Conjugate Diameter: - 364Conoid. See Parabolick Conoid.
Confequent - 78, 187Conflruction of Equations 324
Copper how gauged ..... 448
Corn Meafure - $\quad 3^{6}$
Corollary or Confectary ..... 291
Cube Arithmetical - ..... 123
- its Root extracted ..... 131
Dividend ..... 21
Divifion of Integers ..... ibid.
- of Vulgar Fractions ..... 56
- of Decimals ..... 65
_ of Algebraick Integers 53
—— of Algebraick Fractions
199
- of Surds ..... 173
Divifor ..... 21
Dodecagon, how formed ..... 269
__ inferibed in a Circle ..... 346
- its Area, how found ..... 347
Drip or Fall of a Tun ..... 447
E.
Ellipfis ..... 363
- its Properties ..... 367
- its Parameter found ..... $3^{69}$
__ its Focus found ..... 370
Ellipfis how defcribed ..... $37^{2}$


Equations how turned into Analogies - - 193
Equilateral Triangle - 288

- defcribed - - 296
- infcribed in a Circle 342
- its Area found - 343

Evolution, or Extraction 123

- of Algebraick Integers

160

| Exchange of Coins | - $\quad 170$ |
| :--- | :--- |

Exponent. See Index.
Extream - $-\quad 73$
Factors - - 144
Fellowhip Single - 99

- Double - - Ior

Figure in Arithmetick

- in Geometry - 285

Fraction Vulgar - - 48

- Decimal - - 57
- Algebraick $\quad 345$

Freehold or real Eftate, how
purchafed - - 282
Fruftum of a Cone found 418

- the fame gauged 445
——of a Pyramid found 419
- the fame gauged 443
——of a Conoid found 429
The fame gauged $45^{2}$
Fruftum of a Pyramidoid. See Zone.
Erufum of a Sphere, See Seg-
ment.
Page.


## G.

Gauging practical -433
Geometry - 2
Globe. See Sphere.
Golden Rule Single - 85

- Double _ 94
H.

Harmonical Proportion 189
Heptagon - 250

Hexagon ibid.

- how both are formed 209

Hoghthead, how gauged - 449
Hoofs of Pyramids or Cones,
their Contents found 420
Hoofs, how gauged - 447
Hyperbola $\quad 364$

- its Properties - $3^{i 5}$
—— its Parameter found 388
—— its Focus found 389
- how defcribed - 390
—— its Afymptotes drawn 35
Hyperbolas conjugal - 394
Hyperbolick Conoid - 403
Hypothenufe
2.88
I.

Imperfect Cone $\quad 3^{\prime 2}$
Inching a Tum, \&c. - 447
Inclining Lines - $\quad 234$

- their Property - 302

Indices of Powers - 124 Infinites, their Arithmetick
397.

Integer Numeral - - 3

- Algebraick $\quad 147$

Intereft Simple - 245

- Compound - 253

Interfecting Lines - 302
Inverfe Rule fingle - - 91

- double - - 95
$\underset{(1) 920}{124}$


## I. $N D E X$.

Page.
Page,

| nvolution of gers | $155$ |
| :---: | :---: |
| of Fract | 170 |
| of Surds | 174 |
| Irrationality | 144 |
| Jfofceles Triangle | 288 |
| Kerfey's IEnigmagi |  |


| Notation or Numeration | 6 |
| :--- | ---: |
| Notation of Decimals | 57 |
| of Integral Quantities $\$ 44$ |  |
| of Fractional Quantities |  |


| Number |  |
| :--- | :--- | ---: |
| Numerator |  |
| - | 163 |

Oblate Spheroid - - 403
$\begin{array}{lll}\text { Latus Rectum of am Ellipfis } & 364 & \text { Oblique. See Triangle. } \\ -\quad \text { of a Parabola - } & 3^{65} & \text { Oblique or Scalene Cone } \\ 3^{62}\end{array}$

- of a Hyperbola $\quad 366$ Obtufe. Sce Angle.

Leafes in Reverfions - 271 Obtufe Triangle - 288
Lemma - 291 its Property - 319
Line Right, 8 cc . - 283 Octagon - 290

| — how bifected - how any Way divided 293 |  |
| :--- | :--- | :--- |
| infribed in a Circle | 299 |
| 344 |  |

295 its Area how found $3+5$
Liquid Meafure - - 34 Oppofite Angle - - 304
Load of Ore - - 37 Ordinate - - 364
$\begin{array}{ll}\text { Long Meafure } \\ \text { M. } \quad 33 & \text { Oval } \\ \text { Outward Angle - }\end{array} \begin{array}{r}363 \\ 324\end{array}$

Mean proportional Line how
found
Meafures - — $\quad 313$
Mixed Numbers - 50
Multiplicand - - 14
Multiplication, of Integers 15
— of Vulgar Fractions 55

- of Decimal - 6!
$\ldots$ of Algebraick Integers
 N.

Negative. See Quantity: Node. See Focus.

## I $N \mathrm{D} E \mathrm{E}$.

Page.
Parallelopipedon its Content
414 ..... 14
Product
444_- how gauged
Parameter Right - 364Penfions in Arrears computedat Simple Interelt - 248

- at Compound Intereft 266Penfions their prefent Worthcomputed at Simple Intereft251
- at compound Intereft ..... 268
Pentagon ..... 290
- how formed ..... 299
- infcribed in a Circle 343
344
Perimeter of a Triangle ..... 326
- of a Square ..... 407
- of Powers ..... 126
Periphery. See Circumference.
Perpendicular ..... 285
- how let fall
- how let fall ..... 294 ..... 294Pipe, how gauged - 449Plane Geometrical - 285In Plano, to defcribe an Ellipfis
372 ..... 384
Po a Hyperbola = 390 Point Geometrical ..... 283
Points, to defcribe an Ellipfis by
374
- a Parabola ..... 385
Polygons regular - 290 ..... 299Doly their Areas found
Polygon irregular - 290
Powers ..... 123341
290
Prime Numbers - - 51
Prifm ..... 402ITs Content found
Page. ..... 291
Problem
73
Progieflion Arithmetical
76
76
- Geomerrical -
- Geomerrical -
6
6
Proportion Continued ..... $7^{6}$
- Disjunct. See Golden Rule.
Proportion Compound -94-Duplicate and Triplicate192
Proportional Line, third howfound313
- Fourth how found ..... 314
Pyramid ..... 403
_its Content found ..... 415
_the fame gauged ..... 443
Pyramidoid ..... 403
- its Content found ..... 430
Pythagorick Theorem ..... 308
Q.
Quadrangle $\quad 316$
Quadrant ..... 287
Quantity ..... 2
- Simple and Compound——Affrmative and Negative145
Queftions limited and unlimited
176, 227Quotient - - 21R.
Radius ..... 286
Ratio ..... 76
392
39290
- how defcribed -
- how defcribed -


## I N D EX.


Scalenous Triangle - 288
Scholium $-\quad 291$
Sector of a Circle - 287
its Area - $\quad 406$

Segments of a Bare - $\quad 319$
Segment of a Circle - 287

- its Area gauged

444
Segment of a Sphere - 424

- the fame gauged

Segment of a Spheroid
Semicircle - - 286

- its Property

Signs Algebraick 4, 5, 144, and 227

- Geometrical - 301

Similar Triangles - - 310

- their Properties

Sines Natural, calculated
Sliding Rule 310 356

Solid
Specifick Gravity - - 117
Sphere
its Superficies - ${ }^{42} 121$
its Content

- its Content gauged 445

Spheroid - - - $4^{\circ} 3$

- its Content - 426

Spindle Parabolick. See Pyramidoid.

Page.
Square Arithmetical - 123 ——its Root extracted . 126, 234
Square imperfect, compleated
197
square Geometrical ..... 289

- how formed ..... 296
- defcribed about a Circle
Standard for Gold and Silver118
Sterling Money ..... $3^{1}$
Steps. See Regiffring, \&c.
Subtend ..... 305
Subtenfe or Chord ..... 33 I
Subftitution ..... 194
Subtraction of Integers ..... II
- of Weights and Meafures41
- of Vulgar Fractions ..... 54
- of Decimal Fractions ..... to148
—— of Algebraick Fractions168
- of Surds - - ..... 172
Subtrahend ..... 13
Superficies or Surface - 285
Surd - - - 128Firft Surfolid Root extracted
135, 236
Second Surfolid Root extracted139
T.Tangents Natural calculated356
Tangent drawn to an Elliplis376
- to a Parabola ..... 385
- to a Hyperbola - ..... 393

Theorem - - ${ }^{291}$ Time,

## $I N D E X$.

 $F \quad I \quad N \quad I$.

## BOOXS Printed for C. Hitch, at the RedLion, in Pater-Nofter-Row.

1. $T \mathrm{HE}$ Poftiumous Works of Mr. Fohn Ward, Author of the Young Mátbematiticinn's Guide. In two Parts. I. Contaiping his new Method of Navigation by Parallel Parts. By which all Queftions in Sailing may be anfivered with great Expedition and Fruth, in a different Manner from plain Mercator and great Circle Sailing, by the Solution of a plain Triangle onily, Alfo Compendiums of Practical and Speculative Geometry, and of plain Trigonometry. Part II Containing the Doctrine of the Sphere and the-Demonftrations and Calculations of Spherical Trigonometry; in which the Conitructions of the Figures are new, and drawn fo as to reprefent Solids, price $6 s$.
II. An Introduction to Geography, Aftronomy, and Didiling; Containing the moft ufeful Elements of the faid Science, adapted to the meaneft Capacity, by the Defcription and Ufe of the Celeftial and Terreftrial Globes, with an Introduction to Chronology. The ad Edition's with largo. Additions: By George Gordon, price 5 s.
III. Affronomical Dialogues between a Gentleman and a Lady: Wherein the Doetrine of the Sphere, Ufe of the Globes, and the Elements of Aftronomy and Geography are explained in a pleafant, eafy, and familiar Way ; With a Defcription of the famous Inftrument called the Orrery. By Jobn Harris, D. D. and F. R.S. price 3s. $6 d$.
IV. Arithmetick in the plaineft and moft concife Method hitherto extant ; with new Improvements for Difpatch of Bufiners in all the feveral Rules; as alfo Fractions, Vulgar, and Decimal, wrought together after a new Method that renders both eafy to be underftood in their Na rure and Ufe. The whole perufed and approved of by the moft eminent Accomptants in the feveral Offices of the Revenues, viz. Cuftoms, Excife. E®c. as the only Book of its Kind, for Variety of Rules, and Brevity of Work. By George Fifher, Accomptant. The $;$ th Edition, with large Additions and Improvements, 12 mo , price 2 s .6 d .
V. A Compendious Courfe of Practical Mathematicks ; particularly adapted to the Ufe of the Gentlemen of the Army, in 3 Vol. price 9 s.

Arithmetick in Epitome; or a Compendjum of all its Rules, both Vulgar and Decimal, in two Parts. The 4 th Edition price 2 s .6 d .

An Effay on Book-keeping, according to the true Italian Method of Debror and Creditor, by double Entries, wherein the Theory of that excellent Art is laid down in a few plain Rules; and the Practice made evident and eafy by variety of intelligible Examples. The whole in a Method new and concife. The 4 th Edition corrected, price is. 6 d .
(Thefe thrce by William Webtter, Writing-Mafer.
VI. A Treatife of Algebra, with the Application of it to a Variety of Problems in Arithmetick to Geometry. Trigonometry, and Conick Sections. With the feveral Methods of folving and conftructing Equations of the higher Kind, tranflated from the Latin. By Cbrifian Wolfus, Chief Profeffor of Mathematicks and Philofophy in the College of Maga deburgh in Germany, and F. R. S. price 5 s.

## abentin

## DATE DUE

| JUN - | 2012 |  |  |
| :---: | :--- | :--- | :--- |
| JUN - | 2012 |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |




[^0]:    2uef. I. Suppofe 15 Burhels of Wheat at 5 s. the Bufhel, and 12 Buthels of Rye at 3 s. 6 d. the Bufhel, were mixed together;

[^1]:    - That the Englifh Coin may want neither the Purity nor - Weight required, it is moft wifely and carefully provided, that ' once every Year the chief Officers of the Mint appear before the 6 Lords of the Council in the Star-Cbamber at Weftminfter, with - fome Pieces of all forts of Monies coined the foregoing Year, - taken at adventure out of the Mint, and kept under feveral - Locks, by feveral Perfons, "till that Appearance, and then by - a Jury of 24 able Goldfmitbs, in the Prefence of the faid Lords, 's every Piece is moft exactly weighed and affay'd.'

    This if it were conftantly practifed would keep our Coin to it's true Standard, $E^{\circ} c$.

[^2]:    Example 1. What is the Biquadrat Root of 4857532416 ? Firft extract it's Square Root,

[^3]:    * That is, by twice adding or fubtracting the triple Quotient Figure, as was done with the double Quotient Figure for the Root of the fifth Power, page 136 ; and the fingle Quotient Figure for the Cube Root page 131.

[^4]:    All the remaining Examples of extraCting Roots (except Page 260) are left in the Author's own Method; which by this Time, it is prefumed, the Learner will eafily know how to correct of himfelf, if he takes due Notice of what has been delivered Page $13 T_{1} 132, \mathcal{G}^{2} c_{0}$

[^5]:    2 Di., 0000001981

[^6]:    * The Error is here corrected, which Mr. F. Robertfon takes Notice of in his Book, entitled, A Compleat Treatife of Menjuration, Page 160.

[^7]:    * Which is the Subtangent of the Curve exprefirg Briggs's Legaritbms, Sce Keil's Trig.
    

